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BACKGROUND

Introduction

The objective of this research was to evaluate a novel sensing approach for structural health
monitoring (SHM) purposes which is contactless, inexpensive, and flexible in its application
while addressing high computational costs of block matching algorithms such as DIC. Vibration
data are important in a number of disciplines such as mechanical and structural engineering. A
comprehensive review on structural health monitoring (SHM) shows the efforts put forth to
estimate damage and damage location based on observed changes in natural frequencies of
vibration [1]. The literature contains different resources addressing vibration-based SHM as well
[2]-[8]. Finally, natural frequencies from in-service structures are often used to calibrate finite
element (FE) models [9], [10].

Photogrammetry, the measurement based on visual data is a vital field subject to innovation and
study among different research disciplines. Photogrammetry has also been used to measure
displacements and strains in the field of structural engineering. As an example, Faghri [11] used
special analog cameras, which were at the time cutting edge analog technology, to measure
displacements and strains in piers and the deck of a bridge. The advent of digital video
technology made the implementation of computations on the videos more convenient, enticing a
wide range of innovation. To monitor bridges, Fraser et al. [12] were among the pioneers using
computer vision in their integrated “decision support system” framework. In an interesting effort,
Zaurin and Catbas used digital videos to measure the location as well as the approximate amount
of load on a bridge [13]-[16]. They went even further by defining a unit influence line (UIL) as a
measure of health of bridges [14]. Other efforts have been put forth to capture the dynamic
response of bridges using video cameras. Lee et al. [17], [18] devised a system to measure
displacement using digital cameras implemented with a telescopic lens and target recognition
algorithms. Digital image correlation (DIC) is a block matching algorithm widely used in
mechanical engineering and fluid mechanics where it is mostly known as particle image velocity
(PIV) [9]. Both have found great interest in the civil engineering domain well [19]. Recently, the
technique is finding its way to be used as an alternative to LVDT transducers [20]. Specifically,
Kim et al. used DIC to measure the natural frequencies of a cable in a cable-stayed bridge to
calculate the tensile force using a heuristic formula [21]. New methodologies are also being
developed to make the displacement measures more accurate and feasible with reasonable
computation costs for the case of structural health monitoring (SHM) of bridges [22], [23],
[24],[25]. Although the application of digital videos in SHM is in its early stages, the achievements
are promising. Considering the ease of use, implementation and cost efficiency of this technology,
it is highly recommended to perform more research in order to develop the approach to a point

where it can complement or even replace conventional sensors.
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Background

The response often measured using digital videos is displacement, from which other responses
and characteristics can be derived. Block matching algorithms such as digital image correlation
(DIC) chose a block of pixels in one frame and search for a block with similar characteristics in
the next frame. This similarity is defined using different functions which in DIC it is often cross
correlation. The process is repeated by sliding the block across the entire image until the entire
image has been searched. Distinctive features within a block of pixels is required for the algorithm
to be able to differentiate between different regions. This is the main reason why a random
speckle pattern is required on the surface in order to use DIC.

In DIC a region of interest (ROI) is identified by the user with each corner referred to as reference
point as shown in Fig. 1 (a). Then the displacement is calculated at each reference point (Fig. 1
(b)) with a displacement filed associated to the rest of the image based on the calculated values at
these reference points (Fig. 1 (c) and 1 (d)).

P (xy, yp)

Reference subset =~ Q (%)

Reference image Deformed image

C) d)
Fig 1. (a) Random speckle pattern with region of interest, (b) calculated displacements at

each reference point, and (c) and (d) displacement field based on continuity assumption.
Source:[26].



Another category of methods to measure displacement using camera is tracking certain features
within the texture of the images and by solving the “optical flow” equation [27]In these methods,
potential texture features such as a corner is extracted then the optical flow equation is solved for
a patch of pixels to estimate displacement.

Using DIC, Yoneyama et al. [20] were able to measure displacement continuously along the
length of a laboratory bridge girder (Fig. 2 (a)). Reportedly, they were able to quantify
displacements as small as 70% of a pixel’s field of view. In DIC and other block matching
algorithms, sub-pixel accuracy is widely claimed but it has limitations [28]. In the application of
DIC it should be noted that the computational costs of the algorithm can be quite extensive.
Avoiding these costs and devising shortcuts can lead to systematic errors. For example, to achieve
sub-pixel accuracy, often Newton-Raphson (NR) algorithms are used. For NR to converge, the
displacement at the first reference point is calculated and associated to consecutive points. This
may result in path dependent displacement fields [19]. Also, the choice of the speckle pattern is
critical in making DIC continuously applicable across the object. Moreover, comparatively large
displacements and rotation angles can make the detection of peaks in the correlation function
difficult which will lead to implementation of coarse to fine algorithms that make the it even more
computationally cumbersome [19].

Deflection, mm
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Fig 2. (a) Outline of a laboratory girder, (b) calculated displacement field. Source:.

Tracking features is another approach and has been used in monitoring of in-service bridges.
Fukuda et al. [24], by defining orientation code matching (OCM), were able to measure
displacement of a target point on a bridge at a distance of 300m. However, they had no physical



measurement to verify their displacement time history. Again, the limitations of the sub-pixel
accuracy claimed in this methodology needs more theoretical and practical insight.
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PROPOSED APPROACH

Fundamental Concept

We propose that every pixel in a digital video taken from a structure represents a candidate
virtual visual sensor (VVS) that can be used for SHM purposes (first suggested by Patsias, S. &
Staszewskiy [29]). The term “VVS” follows the terminology suggested by Song, Bowen, et al. [30].
Although the approach presented in the latter paper may appear similar, it is fundamentally
different as they were employing a Lagrangian specification where a target (or feature) is tracked

in space and time.
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Fig 3. Proposed methodology of a virtual visual sensor (VVS) to measure structural
vibrations. xp and yp represent fixed coordinates of the monitored pixel, P. “Pixel value”

corresponds to the grey-scale intensity of the pixel. Source: [22]

Our proposed methodology uses an Eulerian specification where a specific pixel is selected and
monitored which is illustrated in Fig. 3: the intensity of the pixel at location x, and y» is monitored
over time and analyzed using the Fast Fourier Transform (FFT) [31], [32] to reveal the frequency
of vibration. Note that the pixel value in the time domain represents gray-scale intensity and does
not directly correspond to any physical entity such displacement or any of its derivatives. As a
result, at this point we are not able to estimate the amplitude of vibration but only the frequency

of the motion which represents a limitation.

Theoretical Basis
Digital videos are a sequence of digital images. Each digital image consists of a series of points at
each x and y coordinate having three values of red, blue and green (RGB). The resolution of
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digital cameras (simply the number of pixels) is an exponentially improving technology. The
frame rate actually is an important key factor when measuring high frequency response.
According to the Nyquist-Shannon theorem [33] the required frame-rate to measure a signal with
maximum frequency content fis 2f. This in simple terms means that if we have a camera with 30
fps, the maximum frequency we are capable of measuring is 15 Hz. This problem can be overcome
by using a high frame-rate camera. As an example, apple recently announced 8 Megapixel
resolution at 240 fps (= frames per second) for its iPhone 6 models. Typical frame rates of
commercially available digital cameras are 25, 30, or 60 fps. In this study we used a range of
cameras, including two inexpensive point-shoot cameras with 25 and 30 fps, respectively, and a
new high-speed camera mainly used in the adventure sports community that can capture videos
up to 240 fps. To further advance the domain of application we also tried high-speed cameras
produced by Photron which will be discussed in detail later. Video frames are typically stored in
RGB (red-green-blue) color mode as measured by the camera’s image sensor [24]. A single grey-
scale value, called intensity, I, is assigned to each pixel where 0 and 255 represent black and white,
respectively. MATLAB uses a linear combination to calculate I based on RGB values that

eliminates hue and saturation information while retaining the luminance [34]:

I=0.2989R +0.5870G +0.1140B (1)

An example of experimental data collected with a VVS and the resulting intensity curves are
shown in Fig. 4. If the intensity value is smoothed using a 5-point moving average as shown in
Fig. 4 (e), the quantization effects present in the raw brightness values (Fig. 4 (a), (b), and (c)) and
the computed intensity value (Fig. 4 (d)) can effectively be removed to reveal a relatively
harmonic motion. For this study, raw intensities (example shown in Fig. 4 (d)) were used for the

computation of frequencies.
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(for illustrative purposes). Source: [22]

Fig. 5 illustrates the factors that influence the accuracy and reliability of the proposed VVS. The

dotted line represents the intensity curve I (x) along a path x. For this theoretical example, the

background is assumed to be light colored and the object of interest dark colored. The location

and size of the monitored pixel is depicted by the grey square and denoted with P(x,t). L

represents the length over which the intensity changes. Fig. 5 represents a snapshot and as time ¢
progresses the intensity curve I will oscillate horizontally (in the x-direction) and the pixel

vertically, following the I(x) curve.
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Source: [22]

If the object is vibrating at a natural frequency @, and without losing generality we can write
x, =Lsin(a,t), hence the intensity value becomes I(x,)=1 (L sin(a)ot)) . If we want to consider

the effect of the intensity function [ (x) on our measured peak frequencies we can write:

F(I(x))=[" I(Lsin(ayt))e " dt 2)
If I (x) is a linear function by subtracting the DC term we are able to compute the exact peak
frequency (neglecting any quantization noise) I (Lsin(a)ot)) =aL sin(a)ot) so that:

T

F(I(t))=7a[5(a)—a)0)+5(a)+a)oﬂ (3)

joot —jot

—e .
we can write:

If I (x) is a nonlinear function, e.g. x", with the identity sin( a)ot) =
- ejwt _e—jwt n iy L n w M ) .
F(I1(t))=["| L=—="— | eoat=| = -1 o2kt ot gy 4
Taking the sigma out of the integral we have:
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(n—2k)a)0 for O<k<n.If ] (x) is written as a power series, the magnitude of the spurious

impulses in the frequency domain can be calculated based on the above equation.
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Fig. 6 (a) illustrates when the intensity function in the spatial domain, I (x) is a third degree

polynomial, I(x) = x%, and the displacement follows a sinusoidal function with a frequency of 1

Hz (Fig. 6, second row) the observed intensity response in the time domain, I (t) is not a

sinusoidal function, as illustrated in Fig. 6 (a), third row. In the absence of noise, the Fourier
transform of the intensity values have two peak frequencies at 1 and 3 Hz, as shown in the Fig. 6

(a), fourth row, which verifies Eq. 5). On the other hand, if I (x) is linear, the resulting I(t) is

sinusoidal, as shown Fig. 6 (b). A highly non-linear case such as I(x) = x*° results in an impulsive

response of the intensity, I (t) in turn leading to multiple peaks in frequency domain as shown

in Fig. 6 (c). This illustrates the effect of occlusion.

From the discussion above, the following can be concluded:
¢ The extreme positions (peak amplitude points) of the VVS with respect to the intensity curve

I(x) should be located on an approximately linear portion of I(x) and within L. If I(x) is

nonlinear, spurious frequency peaks will occur.

max min

¢ The intensity range Al =(I -1 ) should be maximized, i.e. a small range will increase

quantization noise. This can be achieved by selecting proper background and lighting
conditions.

¢ The number of pixels across L should be maximized which is directly related to the spatial
resolution.

¢ The size of the VVS with respect to the length should be small to avoid averaging of measured

intensity values and quantization noise.

Additionally, the following factors influence the accuracy of VVS:

¢ High sampling rates, i.e. large number of frames per second, decrease the quantization noise.
Minimum sampling rates as given by the Shannon sampling theorem apply.

¢ The total signal duration T directly influences the resolution and thus the accuracy of the VVS,

1
i.e. the resolution of a signal in the frequency domain is Af = T

Quantization Error

Analog-to-digital (A/D) conversion involves two main steps, namely: sampling in time and
quantization. Errors due to quantization and their effect on the signal is a known issue addressed
in the literature, e.g. in [36]. Assuming that the quantizer uniformly covers the limit values and
its error is independent of the original signal, it can be deduced that the error is equivalent to an
additive white noise. The white noise model, however, can be used also with high-resolution

quantization, which satisfies the independence condition. In practical signal processing, in a

16



process called “dithering”, some random noise within the range of quantization is added to the
analog signal prior to digitization to satisfy the independence of the error from the signal [36].

In commercially available cameras, the quantization resolution to reflect the amount of absorbed
energy in CCD sensors is usually 8 bit. However, as discussed previously in, this energy (the
intensity value) does not correspond to any physical quantity such as displacement or any of its
derivatives. In other words, higher amounts of displacement, velocity, or acceleration do not
necessarily cause higher change of intensity and do not increase the quantization resolution.
Assuming that the quantization error can be modeled as white noise, increasing the sampling
frequency will decrease its amplitude in the frequency domain. The frame rates of commercially
available cameras are in the range of 30 to 240 Hz, which is reasonably sufficient for measuring
fundamental natural frequencies of major bridge components but may not be sufficient to detect
all of the natural frequencies due to the high quantization error. High-frame rate cameras
represent an effective yet expensive solution to this issue. In this study, we evaluate the use of
gradient pattern targets mounted to the structure to significantly improve the SNR.

Patch Processing

As discussed earlier and visualized in Fig. 6, choosing one pixel in a video recorded at a
comparatively low frame rate and resolution can lead to ambiguous peaks in the frequency
domain which makes the detection of higher modes difficult or often impossible. To solve the
problem of occlusion which produces periodic impulses in time and frequency domain, one can
choose a patch of pixels and monitor their average value though time. In other words by choosing
a patch of pixels, we virtually decrease the ratio of displacement to the pixel size which makes
the change of intensity smoother. Patch processing can be applied to videos where no targets are
used or combined with linear gradient pattern targets (LGPT) as will be discussed in more detail

in the subsequent sections.

Linear Gradient Pattern Targets

In order to extend the capabilities of our proposed sensing methodology, we investigated the idea
of using linear gradient pattern targets (LGPT) mounted to the structure. LGPTs with different
sizes were used in the experiments as shown in Fig. 7 (a). The idea of these inexpensive and easily
customizable targets, which we printed on regular white paper using a standard laser printer, is
to create a well-defined, linearly-varying background to avoid non-linear behavior as discussed
previously. The criteria for size is to optimize maximum amplitude of vibration, A with the length
of the target, L. A typical cross section of a LGPT as it is captured and represented by the camera

is shown in Fig. 7 (b). The intensity value, although designed to be linear is contaminated with
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noise as shown in Fig. 7 (c), which was computed by subtracting the linear curve from the capture

intensity curve. The distribution of the noise can be seen in Fig. 7 (d).
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Fig 7. (a) Sample linear gradient pattern targets (LGPT), (b) intensity values captured by the

camera and linear curve-fit, (c) calculated noise, and (d) the histogram of the noise. Source: [35].

Noise Reduction Strategies for LGPT's

A strategy to reduce the noise can be to average the intensities of a patch of pixels on the LGPT
and average them as shown in Fig. 8 (a). From Fig. 7 (d) it can be seen that the average of the noise
is close to zero so it can be deduced that by averaging the pixel values, we essentially reduce the
noise. Another strategy for noise reduction can be to choose random pixels on the LGPT and
fitting a linear function on them (Fig. 8 (b)). Tracking the constant part of this linear function
through time can lead to a much less noisy signal (aka. smoothing). The limitation with these
computationally inexpensive noise reduction techniques is that during the whole vibration phase,
the chosen pixels should never leave the LGPT range, otherwise artificial non-linear behavior is

introduced.
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Fig 8. Noise reduction strategies for LGPTs illustrated at time instance t = ti: a) Patch to average

out the noise b) Linear regression approach: measured intensities are mapped onto linear curve-
fit. Source: [35].
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LABORATORY EXPERIMENTS

Single-Degree-of-Freedom Structure

To verity the validity and accuracy of our proposed approach, a cantilever beam with adjustable
length, Lc (i.e. variable stiffness) and a concentrated constant mass on top was tested as shown in
Fig. 9 (a).

MBI
RGE. 150, 146, 145

XG50 Y. 514
RGE 137,133,128

Fig 9. Snapshot of moving cantilever (a) with candidate virtual visual sensor (VVS) (b). Source:
[22]

The test was initiated by creating an initial displacement (by hand) and then letting the cantilever
vibrate in its natural mode of vibration. Acceleration was measured using a high-accuracy
capacitive accelerometer (Model: 2260-010 by Silicon Design, sampling at 1 kHz) attached to the
mass. Additionally, a digital video was taken during the test capturing the motion of the
cantilever using two different cameras: a commercially available digital camcorder (Model:
ViXIA HFS100 HD by Canon, recording at 30 fps) for frequencies up to 10 Hz and a relatively
high-speed camera (Model: Hero 3 by GoPro, recording at 120 fps) for higher frequencies. It
should be noted that, as for any digitally sampled signal, the Nyquist-Shannon [27] sampling
theorem applies, i.e. the sampling rate needs to be set to at least twice the highest anticipated

frequency to be distinguishable in the signal [28]. Anti-aliasing filters were set to one half of the
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selected sampling frequency for the accelerometer. For the cameras, such an option is currently
not available, and one of our goals was to determine whether this represents a problem.

Candidate Virtual Visual Sensors

In this section we compare and discuss the signals computed from a number of different
candidate pixels. For this evaluation the cantilever length, Lc was kept constant at 25 in (635 mm).
Fig. 9 (b) shows three candidate VVS: Pixels A and B are located near the top and the bottom of
the cantilever where the largest and smallest displacements occur, respectively. Pixel C is located
away from the cantilever but capturing its shadow. Intuitively one might pick pixel A since it is
located where the largest motion takes place which should produce the best data. However, in

the case of our proposed approach this does not work well as it is discussed.

Fig. 10 (a) shows example data collected with the accelerometer. Although pixel B is at the bottom
of the cantilever, a place with the smallest motion which can hardly be observed by the naked
eye, the change of intensity (grey scale pixel value) is represented by a relatively harmonic signal
(Fig. 10 (c)). For pixel A located near the top of the cantilever, where the displacement is largest,
the intensity value experiences periodic impulses due to the sudden occlusion of the mostly grey
background by the beam. As a result, the FFT is a periodic function as well, showing pronounced
harmonic peaks, as can be observed in Fig. 10 (b). Although the peak frequency is present and
correct, the upper harmonics are very strong as well which makes the analysis more difficult. The
peak frequency is actually the second harmonic having three times the value of the frequency of
interest. Alternatively, pixel C is found to produce a relatively harmonic signal as well (Fig. 10
(d)). Although it is not located on the structure, it can capture the motion of its shadow. This
represents an opportunity to observe vibrations indirectly, in case the actual structure is not
directly observable.
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Fig 10. Time history (left column) and frequency (right column) data for (a) accelerometer, (b)
pixel A, (c) pixel B, and (d) pixel C. Source: [22]

Although the total average displacement amplitude for the data shown in Figs. 10 (a) and (c) was

approximately 4 in (102 mm) and 0.012 in (0.3 mm), respectively, the signal-to-noise ratios for the

frequency plots are comparable. This further highlights the potential of this sensing approach to

capture small vibrations.
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Accuracy of Virtual Visual Sensors

In order to verify the accuracy of our proposed approach, a pixel close to the bottom of the
cantilever was selected to compute the frequency as described previously and shown in Fig. 9 (a).
The length, Lc was varied between 2 and 25 in (52 and 635 mm) to produce a range of natural
frequencies. Fig. 11 shows the correlation between the physical accelerometer and the frequencies
computed from the selected VVS. The computed frequencies listed in Fig. 11 (a) are given as f
*Af/2 to account for the uncertainty where Af = 1/T with T being the duration of the analyzed
signal in seconds. Although we used zero padding to run the FFT in some cases, which will
provide smoother peaks in the low frequency range, real higher accuracy is not achieved. As can
be observed in Fig. 11 (b), there is excellent correlation between the frequencies computed from
the two measurements. The squared correlation coefficient and standard error between

accelerometer and the camera’s computed frequency were found to be 99.993% and 0.0295,

respectively.
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Fig 11. (a) Table and (b) plot showing correlation between physical accelerometer and virtual
visual sensor (VVS). Source: [22]

Frequency Analysis over Range of Pixels

An extended approach to determine candidate VVS is to analyze a selected area of pixels in a
video around the vibrating structure and then highlighting the pixels that have the same distinct
peak frequency in the image as illustrated in Fig. 12. It should be noted that this only works well
for small amplitudes of vibration for reasons discussed earlier. This involves the following steps:
(1) Select range of pixels to be analyzed within video (shown as white box in Fig. 12 (b) and

())-
(2) Compute time history of intensity values for each of the selected pixels.

(8) Compute the peak frequency for each pixel as described and create a histogram.
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(4) Highlight the pixels with the same peak frequency in the selected range (Fig. 12 (b)).

(5) Normalize the color values with the magnitude of the FFT transform to reduce noise
(optional, Fig. 12 (c)).

(6) Repeat steps 1 to 5 if more than one distinct frequency peak is present in the histogram.

As can be observed from Fig. 12, the result of this analysis is essentially an image of the outline
of the vibrating structure. Note that this was done for a period where the cantilever was
experiencing small displacements to avoid problems as discussed in the previous section. This
analysis could also be used to average peak frequencies from several measurements rather than

using one measurement.

Filter out other
frequencies

Fig 12. (a) Snapshot of cantilever, (b) snapshot with highlighted pixels of same peak
frequency, and (c) snapshot with normalized highlighted pixels of same peak frequency.
Source: [22]

Multi-Degree-of-Freedom Structures

Experimental Test Setup

Two experiments were conducted: Free vibration of the lab-scaled three story system as shown
in Fig. 13 (a) and vibration of a simply-supported steel beam due to a hammer strike (Fig. 13 (b)).
In both experiments, accelerometers were attached to the structures to give an independent
measure as a comparison for the frequencies estimated from the VVS data. In the free vibration
test, an initial displacement was manually imposed on the structure by hand. Following a sudden
release; the system’s free vibration was then recorded until it had damped out. A 142 in (3.6 m)

long simply-support steel beam with a W15x87 cross-section was stroke with an instrumented
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hammer to impose structural vibrations. This second test follows an NDT technique referred to
as impulse response method as described in, e.g. [37].

(a)

Three-story structure

- Accelerometers »

Gradient pattern targets

FASTCAM SA-X2

FASTCAM UX100
Fig 13. Experimental test setups for: (a) Three-story structure and (b) steel beam. Source: [35]

Cameras Used

In these lab experiments, three different cameras were used. For the three-story structure
experiment, a GoPro Hero 3 camera and a Photron UX100 (Fig. 14 (a) and (c)) were used. The
resolution of the GoPro camera was 1280 x 720 pixels and the frame rate was 120 fps. The Photron
camera was used with 500 fps and its full resolution of 1280 x 1024 pixels to evaluate the ability
of detecting higher-order frequencies with high-frame rate cameras. Finally, for the beam
experiment, and to push to the limits of this methodology, a Photron FASTCAM SA-X2 (Fig. 14
(b)) with 5000 fps and its full resolution of 1024 x 1024 pixels was employed. It is important to
note that there is a trade-off between resolution and frame rate due to the bandwidth limit of the
camera hardware. Also, based on the rules of thumb and the experience of our own experiments,
we found that the spatial noise in high-frame rate cameras is relatively high, i.e. higher than in

regular cameras.
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Fig 14. Cameras used for the laboratory experiments: a) Photron FASTCAM UX100, b)
Photron FASTCAM SA-X2 and c¢) GoPro Hero 3. Source: [35]

Reference Data from Accelerometers
Three LGPTs with dimensions 0.315 x 2.36 in (8 x 60 mm) were attached to the three different
masses of the three-story structure as shown in Fig. 13 (a). In addition, two high-fidelity capacitive

accelerometers were attached to the side at the height of masses two and three (see Fig. 13 (a)).
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Fig 15. Sample data from the accelerometers: (a) Second story and (b) third story. Top and

bottom rows show data in the time and frequency domain, respectively. Source:[35].

The natural frequencies computed from the acceleration data from the second and third story was

essentially the same for all of the experiments, as shown in Fig. 15 (a) and (b), respectively. The

only difference in the frequency domain was that the magnitude of the peaks slightly varied. This,
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however, had no influence on the value of the peak frequency. The fundamental frequencies of
vibration were found to be 4.7 Hz, 13.9 Hz and 20.8 Hz.

Results from GoPro Camera

Fig. 16 shows the results from the GoPro Camera without the use of LGPTs. In Fig. 16 (a) it can
be seen that change of intensity is comparatively impulsive which led to several close peaks in
the frequency domain and made the second and third peaks impossible to detect. Even a pixel at
the very bottom of the three-story structure produces multiple peaks in the frequency domain
(Fig. 16 (b)). Using a patch of 16 x 16 pixels it was possible to detect all of the natural frequencies.
Although the magnitude of the third mode is not very large but it is still detectable (Fig. 16 (c)).
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Fig 16. Data from videos of the GoPro camera without LGPTs: (a) One pixel in the middle of
the first floor, (b) one pixel at the bottom, and (c) a 16 x 16 patch of pixels in the middle of the
first floor. Source: [35]
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As mentioned, the LGPTs should significantly improve the results in Fig. 16. By selecting a pixel
on the LGPT of the first floor, all three natural frequencies could be recovered as is evident in Fig.
17 (a). Fig. 17 (b) shows the same data processed using a patch of 5 x 5 pixels on the LGPT as
presented before which noticeably reduced the spatial noise. Fig. 17 (c) shows the data when the
linear regression approach is employed. As can be observed, this processing step is capable of
reducing the noise even better than the patch if applied for the case when LGPTs are used.
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Fig 17. Data from GoPro camera using LGPTs: (a) One pixel on the LGPT, (b) a patch of 5x 5
pixels on the LGPT, and (c) linear regression applied to 10 randomly chosen points on the
LGPT. Source: [35]

It should be noted that the use of LGPTs improves the contrast and decreases quantization
intervals, simultaneously. Comparing the time history part of Figs. 16 and 17 shows that the range
of change in intensity values is almost twice when LGPTs are used. Also, the time history data in

Fig. 17 (c) resemble an actual displacement trace with exponential decay. This, as previously
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mentioned, helps reducing the effect of quantization noise, which is partially responsible for

obscure signals in frequency domain.

Results from Photron FASTCAM U100 Camera

As discussed before, high speed cameras can help improve the signal-to-quantization noise ratio.
For high-speed cameras, picking a pixel at the bottom of the three-story structure without any
noise reduction strategy can reveal all of the natural frequencies (Fig. 18 (a)). Selecting a patch of
pixels on the other hand will give a much less noisy signal and avoids presence of artificial peaks
in the frequency domain as shown in Fig. 18 (b). As described before, the Photron FASTCAM
U100 was used for this experiment. The problems associated with these types of cameras are their
limited storage, which leads to shorter recording time, limited bandwidth, which results in
sacrifice of spatial resolution with higher temporal resolution, and also higher spatial noise. Also,

the higher the frame rate the brighter the medium should be in order to have high quality videos.

The use of LGPTs in conjunction with high-speed cameras can be beneficial as well: as can be seen
from Fig. 19 (c), although the signal is noisy, the peaks are more pronounced. Using a patch of
pixels on the LGPT (Fig. 18 (d)) reduces the noise and shows the peaks even clearer. Qualitatively,
the trend of SNR here is improving from top to the bottom. Similarly to the case of the GoPro
camera, the best SNR is associated with the linear regression technique (Fig. 18 (d)).
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5 pixel patch on the LGPT, and (e) linear regression applied to 10 random pixels on the LGPT.

Source: [35]
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Results from Photron FASTCAM SA_Z Camera

Finally, in order to push the limits of the proposed methodology, we conducted a test on a steel
beam. The stimulus was a hammer impact. In this test, as it is shown in Fig. 19 (b) and (c), several
peak frequencies were deducible from the accelerometer data. Monitoring a patch of pixels at the
boundary of the steel beam where the gradient of the intensity is maximum (the edge), it was

possible to detect several peak frequencies in congruence with the measured accelerometers’

peaks.
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Fig 19. The steel bream test results: (a) Results from the FASTCAM SA_Z camera, and (b) the

results from one accelerometer. Source: [35]

Fig. 19 (a) shows the peak frequencies detected by the camera, while Fig. 19 (b) show the data
from the accelerometers for comparison. As can be seen, even without the LGPT by using a patch
of pixels, several peak frequencies could be detected. The interesting point about this experiment
is that it involves a continuous system where the high frequency displacements are extremely
small, completely undetectable with a naked eye. However, it was possible to detect frequencies
as high as 764 Hz using our proposed VVS.
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IN-SERVICE MONITORING EXAMPLES

In order to evaluate the applicability of this method for practical purposes, our proposed
methodology was applied to two different bridges in-service.

Example 1: Steel Truss Bridge in Oregon

A video of an existing major bridge in Oregon was evaluated. The bridge consists of a continuous
steel truss and some of the vertical hangers have experienced extensive torsional vibrations due
to the high transverse winds which caused vortex shedding. Concerns regarding fatigue at the
connections have been raised and as a result, the Oregon Department of Transportation (ODOT)
has recently retrofitted some of the susceptible members. The reason for the vibrations is the low
torsional stiffness of the used I-sections. A recent research project has investigated the problem

in the laboratory to make predictions on the remaining fatigue life [29].
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Fig 20. Histogram of peak frequencies from all pixels in the video. Insert: (a) Snapshot of

video clip, (b) Colored pixels with same frequencies. Source: [22]

A four second clip from the video (made available to us by Dr. Christopher Higgins) captured
severe torsional vibrations of two vertical hangers labeled (1) and (2) in Fig. 20 (a),
simultaneously. For this analysis, all pixels were analyzed and their peak frequency values
computed as described before. Fig. 20 shows a histogram of all computed peak frequencies. As

can be observed, the majority of computed peak frequencies are close to zero which essentially
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means that the majority of the pixel intensity values don’t change. Frequencies between 0 and 1
can be associated with the fact that the camera was held by hand and therefore probably not
completely fixed. A closer look reveals that there are two distinct frequency peaks that can be

associated with the torsional motion of the two hangers.

By filtering out pixels that are not within the desired frequency range, we obtain the outline of
the oscillating hangers (Fig. 20 (b)) as described in the previous section. The frequencies
computed from one selected pixel for members (1) and (2) are 6.1 +0.125 and 7.1 +0.125 Hz,
respectively. A Finite Element (FE) analysis of a hanger modeled after one of these two members
[38] predicted a torsional vibration frequency of approximately 6.5 Hz. This result is not the actual
measurement but proves that our computed frequencies obtained from the VVS are trustworthy.
It should be noted that the movie was taken with an inexpensive point-and-shoot-type camera
recording at 25 fps by hand without any mechanical stabilization. Additionally, only four seconds
from the original video were usable which directly influences the resolution in the frequency

domain.

Example 2: Prestressed Concrete Pedestrian Bridge

In order to evaluate the real-world performance of our proposed approach on an MDF systems,
we conducted a field test on the Streicker Bridge (Fig. 21 (a)), a prestressed concrete pedestrian
bridge located on Princeton University’s campus in in Princeton, NJ.

Fig 21. (a) View of the Streicker Bridge and (b) test setup, camera position and LGPTs
(insert). Source: [35]
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As can be seen from Fig. 21 (a), the bridge has a unique design with a main span and four
horizontally curved legs. The main span consists of a deck-stiffened arch. The bridge is equipped
with a structural health monitoring (SHM) system consisting of embedded fiber-optic sensors
(FOS). Data from the FOS system were made available to us by Prof. Branko Glisic and allowed
for a direct comparison with our measurements. The dynamic stimulus was provided in form of
a group of students jumping synchronously. The test was performed on April 23, 2014, with

adequate lighting conditions and some wind.

LGPTs were mounted on the inside of a curved leg to measure vertical vibrations while the
cameras were on the other side of the street, approximately 26 ft (8 m) away from the LGPTs. The
camera used was a Canon T4i with 60 frames per second and 128 x 730 resolution. Fig. 22 shows
the results in the frequency domain for both measurements. As can be observed, the two main
frequencies of vibration of the leg, namely 3.0 Hz and 3.6 Hz, were detected by both sensing

approaches with comparable SNRs.
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Fig 22. Frequency response of the Streicker Bridge from (a) the VVS located on a LGPT and
(b) the fiber-optic sensor system data. Source: [35]
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CONCLUSIONS

The concept of Eulerian-based virtual visual sensors (VVS) offers new opportunities for structural

health monitoring. The following conclusions can be drawn from this research:

The fundamental frequency of vibration of single-degree-of-freedom systems [30] can be
accurately computed using the proposed methodology of VVS.

VVS are inexpensive non-contact sensors with great application flexibility.

Multiple independently vibrating elements in one video can be distinguished and their
fundamental frequency of vibration computed.

The accuracy and resolution of the measurements depends on a variety of factors such as
sampling rate, quantization noise (function of pixel size and location with respect to intensity
curve), image sensor quality and size, and lens type.

By highlighting the pixels with a distinct frequency, the outline of the vibrating elements in a
video can be recovered. This can be useful to select VVS.

The introduction of linear gradient pattern targets (LGPT) increases the signal-to-noise-ratio
(SNR) and enables detecting higher natural frequencies which is particularly helpful when
ordinary cameras are used.

Analyzing a patch of pixels rather than a single pixel can be employed when no LGPTs are
used to smooth the change of intensity, i.e. minimize impulse-type response in the signal
(occusion problem).

While high-speed camera technology is still expensive and mostly used by researchers, the
use of commercially-available cameras in conjunction with LGPTs allow for accurate and
reliable detection of multiple natural frequencies.

By analyzing a patch of pixels or apply a linear regression approach, the SNR of LGPTs can
further be improved.

High-speed cameras benefit from lower noise amplitude due to oversampling and are able to
detect higher frequencies even without LGPTs.

Our methodology also works in the field where we found the same peak frequencies
compared to the existing structural health monitoring (SHM) system.

The findings of our studies were published in two peer-reviewed journal articles [12, 36] and one

conference paper [37].
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RECOMMENDATIONS

In order to further develop our proposed methodology and bring it to the point where it can be

used in practice, we recommend the following additional research:

e In-depth characterization of fundamental relationships in the laboratory: resolution, frame
rate, camera and lens type, distance from object, atmospheric influence, etc.

e Establishment of approach to correlate intensity with actual displacement.

e Evaluation of advanced signal processing methods to further improve the SNR and
quantization noise, and adjust for variable lighting.

e Perform additional in-service tests to gain practical experience.

36



REFERENCES

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

S. W. S. Doebling, C. R. C. Farrar, M. B. M. Prime, and D. W. D. Shevitz, “Damage
identification and health monitoring of structural and mechanical systems from changes
in their vibration characteristics: a literature review,” 1996.

M. Friswell, “Damage identification using inverse methods,” Phylo Trans. R. Soc. A ..., no.
December 2006, pp. 393—410, 2007.

T. Duffey and S. Doebling, “Vibration-based damage identification in structures
exhibiting axial and torsional response,” Trans. ..., 2001.

K. D’Souza and B. Epureanu, “Damage detection in nonlinear systems using system
augmentation and generalized minimum rank perturbation theory,” Smart Mater. Struct.,
vol. 14, pp. 989-1000, 2005.

C. Fritzen, “Vibration-based structural health monitoring—concepts and applications,”
Key Eng. Mater., vol. 294, pp. 3-18, 2005.

C. Farrar and K. Worden, “An introduction to structural health monitoring,” Philos.
Trans. ..., vol. 365, no. 1851, pp. 303-315, 2007.

C. Farrar and N. Lieven, “Damage prognosis: the future of structural health monitoring,”
... R. ..., vol. 365, no. 1851, pp. 623-632, 2007.

D. Montalvao, N. Maia, and A. Ribeiro, “A review of vibration-based structural health
monitoring with special emphasis on composite materials,” Shock Vib. Dig., vol. 38, no. 4,
pp- 295-324, 2006.

J. E. Mottershead and M. I. Friswell, “Model Updating In Structural Dynamics: A
Survey,” |. Sound Vib., vol. 167, no. 2, pp. 347-375, Oct. 1993.

D. Ribeiro, R. Calgada, R. Delgado, M. Brehm, and V. Zabel, “Finite-element model
calibration of a railway vehicle based on experimental modal parameters,” Veh. Syst.

Dyn., vol. 51, no. 6, pp. 821-856, Jun. 2013.

A. Faghri, “Autostress design deformation measurements by photogrammetry and
surveying,” University of Washington, 1983.

M. Fraser, A. Elgamal, X. He, and J. Conte, “Sensor network for structural health
monitoring of a highway bridge,” ]. Comput. Civ. Eng., no. February, pp. 11-24, 2010.

37



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Zaurin and F. N. Catbas, “Integration of computer imaging and sensor data for
structural health monitoring of bridges,” Smart Mater. Struct., vol. 19, no. 1, p. 015019, Jan.
2010.

F. N. Catbas, R. Zaurin, M. Gul, and H. B. Gokce, “Sensor Networks , Computer Imaging
, and Unit Influence Lines for Structural Health Monitoring : Case Study for Bridge Load
Rating,” vol. 17, no. August, pp. 662-670, 2012.

F.N. C. (University of C. F.) R. Zaurin, “Computer Vision Oriented Framework for
Structural Health Monitoring of Bridges,” sem-proceedings.com.

R. Zaurin and F. Necati Catbas, “Structural health monitoring using video stream,
influence lines, and statistical analysis,” Struct. Heal. Monit., vol. 10, no. 3, pp. 309-332,
Jun. 2010.

J. Lee, Y. Fukuda, and M. Shinozuka, “Development and application of a vision-based
displacement measurement system for structural health monitoring of civil structures,”
Smart Struct. Syst., vol. 3, no. 3, pp. 373-384, 2007.

J.J. Lee and M. Shinozuka, “A vision-based system for remote sensing of bridge
displacement,” NDT E Int., vol. 39, no. 5, pp. 425-431, Jul. 2006.

B. Pan, K. Qian, H. Xie, and A. Asundi, “Two-dimensional digital image correlation for
in-plane displacement and strain measurement: a review,” Meas. Sci. Technol., vol. 20, no.
6, p- 062001, Jun. 2009.

S. Yoneyama and A. Kitagawa, “Bridge deflection measurement using digital image
correlation,” SEM Proceedings, 2006. (http://sem-proceedings.com/06s/sem.org-2006-SEM-
Ann-Conf-s73p02-Bridge-Deflection-Measurement-Using-Digital-Image-Correlation.pdf)

S.-W. Kim, B.-G. Jeon, N.-5. Kim, and J.-C. Park, “Vision-based monitoring system for
evaluating cable tensile forces on a cable-stayed bridge,” Struct. Heal. Monit., vol. 12, no.
5-6, pp. 440-456, Dec. 2013.

T. Schumacher and A. Shariati, “Monitoring of structures and mechanical systems using
virtual visual sensors for video analysis: fundamental concept and proof of feasibility.,”
Sensors (Basel)., vol. 13, no. 12, pp. 16551-64, Jan. 2013.

J. Chen, N. Wadhwa, and Y. Cha, “Structural modal identification through high speed
camera video: Motion magnification,” Top. Modal Anal. I, vol. 7, no. 191-197, 2014.

Y. Fukuda, M. Q. Feng, Y. Narita, and T. Tanaka, “Vision-Based Displacement Sensor for
Monitoring Dynamic Response Using Robust Object Search Algorithm,” IEEE Sens. J.,
vol. 13, no. 12, pp. 4725-4732, 2013.

38



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

A. Shariati and T. Schumacher, “Oversampling in Virtual Visual Sensors as a Means to
Recover Higher Modes of Vibration,” in QNDE Proceeding.Under Review

P. Bing, X. Hui-min, X. Bo-qin, and D. Fu-long, “Performance of sub-pixel registration
algorithms in digital image correlation,” Meas. Sci. Technol., vol. 17, no. 6, pp. 1615-1621,
Jun. 2006.

J. Shi and C. Tomasi, “Good features to track,” in Proceedings CVPR’94., 1994 IEEE
Computer Society Conference on, 1994, pp. 593-600.

C. Lee, W. A. W. Take, and N. A. N. Hoult, “Optimum Accuracy of Two-Dimensional
Strain Measurements Using Digital Image Correlation,” J. Comput. Civ. Eng., vol. 26, no. 6,

pp. 795-803, Nov. 2012,

S. Patsias and W. J. Staszewskiy, “Damage Detection Using Optical Measurements and
Wavelets,” Struct. Heal. Monit., vol. 1, no. 1, pp. 5-22, Jul. 2002.

Y. Song, C. Bowen, H. Kim, and A. Nassehi, “Virtual Visual Sensors and Their
Application in Structural Health Monitoring,” urmassn11.iids.org.

G. Strang, Linear Algebra and Its Applications. Harcourth Brace Jovanovich, 1988, p. 520.

G. Strang, Introduction to Linear Algebra, Second Edition. Wellesley-Cambridge Press, 1993,
p- 472.

C. E. Shannon, “Communication in the presence of noise,” Proc. IRE, vol. 86, no. 2, pp.
447-457, Feb. 1949.

“Convert RGB image or colormap to grayscale - MATLAB rgb2gray.” [Online]. Available:
http://www.mathworks.com/help/images/ref/rgb2gray.html. [Accessed: 31-Jul-2013].

A. Shariati, T. Schumacher, and N. Ramanna, “Strategies for processing data from virtual
visual sensors to detect higher-order frequencies of vibration,” Meas. Sci. Technol.,Under
Review

B. Widrow and I. Kollar, “Quantization noise,” Cambridge Univ. Press, 2008.

A. G. Davis, “The nondestructive impulse response test in North America: 1985-2001,”
NDT E Int., vol. 36, no. 4, pp. 185-193, Jun. 2003.

P. Keller, “Wind induced torsional fatigue behavior of truss bridge verticals,” Oregon
State University, 2012.

39



