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Chapter 1:   Literature Review 

 In order to document previous bridge studies from other researchers, a literature review 

was conducted.  The review focused on the types of tests that have been conducted in the past on 

bridges similar to the bridge at Perry, Utah.  The goal of the literature review was to document 

the type of data, equipment, and results that would need to be developed through the proposed 

development of the short-term equipment.  Six of the articles reviewed have been summarized in 

the following sections. 

Live-Load Distribution Factors in Prestressed Concrete Girder 
Bridges (Barr 2001) 

The research presented in this article focused on determining flexural live-load 

distribution factors for three-span, prestressed concrete girder bridges.  The study used the results 

from a live-load test on a bridge in Washington in order to calibrate twenty-four finite-element 

models which then were used to obtain Live Load Distribution Factors (LLDFs).  The moments 

calculated from the recorded strain values of the actual bridge, as compared to the moments 

computed from the finite-element model, differed by a maximum of less than 6% showing a 

good correlation.   

Changes in LLDFs due to lifts, intermediate diaphragms, end diaphragms, continuity, 

skew angle, and load types were determined by comparing the finite-element model of the 

Washington Bridge to alternative models with adjusted characteristics.  The study also compared 

the acquired LLDFs to those calculated in accordance to the American Association of State 

Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) 

Specifications.  When making this comparison, the study found that the AASHTO LRFD 

procedures were up to 28% larger than the calculated LLDFs from the finite-element models, 



7 
 

meaning the AASHTO LRFD specifications are relatively conservative.  However, this large 

percentage difference occurred when comparing the alternative bridge models such as imposing 

lifts and different skew angles.  When comparing the models that most closely followed the 

configuration that was considered in developing the LRFD specifications to the LRFD 

specifications, the distribution factors varied by a maximum of 6%.   

The final conclusions of the paper indicate that distribution factors decrease with an 

increase in skew, distribution factors calculated for lane loading are lower than those calculated 

for truck loading, and finally, if the Washington Bridge used in the study had been designed 

using finite-element model analysis, the required release strength could have been reduced by 

1000 psi (6.9 MPA) or the bridge could have been designed for a 39% higher live-load. 

Live-Load Analysis of Posttensioned Box-Girder Bridges (Hodson 
2012) 

This study focused on the determination of flexural live-load distribution factors for cast-

in-place, box-girder bridges.  The bridge used for this research was a two-span, cast-in-place, 

prestressed, continuous box-girder bridge with a skew of 8˚.  This bridge was instrumented with 

42 uniaxial strain transducers (strain gauges), 10 vertical deflection sensors (displacement 

transducers), and one uniaxial rotation sensor (tilt sensor).  A live-load test was conducted by 

driving two heavily loaded trucks along predetermined load paths of the bridge.  The data 

collected from the live-load test was then used to calibrate a finite-element model of the bridge.  

Once calibrated, the finite-element model was then used to determine the actual live-load 

distribution factors and load ratings for the bridge.  These values were compared to the 

distribution factors and ratings in accordance to the AASHTO LRFD Specifications.  In addition, 
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the finite-element model was used to investigate the various bridge parameters affecting the 

distribution of vehicle loads for this type of bridge.   

The parameters evaluated included span length, girder spacing, parapets, skew, and deck 

thickness.  This study concluded that the procedures to calculate the distribution factors from the 

AASHTO LRFD Specifications are conservative as compared to the finite element model 

distribution factors for the interior girder. Additionally, the AASHTO LRFD Specifications are 

non-conservative for the exterior girder distribution factors.  In response to these findings, and 

through the use of the relationships obtained through the parametric study, a new equation for 

calculating exterior girder distribution factors was proposed to ensure a more conservative 

approach. 

Live Load Distribution Formulas for Single-Span Prestressed 
Concrete Integral Abutment Bridge Girders (Dicleli and Erhan 
2009) 

The research presented in this article focused on determining formulas for live-load 

distribution factors for the girders of a single-span integral abutment bridge.  To accomplish this 

objective, the researchers developed two and three dimensional finite-element models of multiple 

different integral abutment bridge types.  The study used a variation of the bridge model’s 

superstructure in order to improve the current understanding of integral abutment bridges.  The 

bridge properties that were varied included span length, number of design lanes, prestressed 

concrete girder size and spacing, and slab thickness.   

Live-load distribution factors (LLDFs) were determined using the different models and 

then these values were compared to the LLDFs calculated in accordance with the American 

Association of State Highway and Transportation Officials (AASHTO) Specifications for simply 
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supported bridges.  In comparison to the AASHTO Specifications, the determined formulas for 

the interior girder shear differed by as much as 10%, but were generally between 3-6%.  For the 

girder moments and outside girder shear, the results varied greatly.  Some comparisons provided 

nearly exact matches between the models and AASHTO Specifications while other results varied 

by as much as 87%.  Generally these results were conservative, however, there were cases where 

the comparisons were up to 13% non-conservative.   

The results of this study led the researchers to conclude that the AASHTO Specifications 

for simply supported bridges could be used for interior girder shear but was inaccurate for girder 

moments or outside girder shear due to the large variations.  Modifications were provided by the 

authors for the AASHTO LLDF Specifications which, the authors state, will provide more 

accurate LLDFs for IABs.  In addition to those modifications, other equations were provided and 

determined to provide good results independent of the AASHTO LLDF Specifications. 

Deck Slab Stresses in Integral-abutment Bridges (Mourad and 
Tabsh 1999) 

The research presented in this article involved using finite-element models to evaluate the 

behavior of integral-abutment bridges with concrete deck slabs on composite steel beams.  The 

results of these models were then compared to the American Association of State Highway and 

Transportation Officials (AASHTO) Specifications. This study was performed in response to 

integral-abutment bridges being built using the design specifications provided by AASHTO for 

jointed bridges without regard to the different behavior of the integral-abutments.   

Two integral-abutment bridges were modeled in this study differing in slab thickness, 

beam cross sections, and the number of spacing piles.  The load for the models consisted of two 

HS20 trucks placed side-by-side in accordance with the 1996 AASHTO Load Factor Design 
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provisions.  The moments provided from the models were then compared to simply supported 

bridges of equal size and similar properties.  In addition, the stresses presented by the model 

were compared to the stresses calculated using the AASHTO Specifications for bridges.   

When comparing the moments, the researchers determined that the maximum positive 

moment in the deck slabs was 10-30% lower for the integral-abutment bridges as compared to 

the simply-supported bridges.  The differences nearly doubled for the case of negative moments 

with the integral-abutment bridges being 20-70% lower than the simply-supported bridges.  

When comparing the stresses from the finite-element models to the AASHTO Specifications, the 

study concludes that the integral-abutment bridges are conservative by 40%. 

New Technologies in Short Span Bridges: A Study of Three 
Innovative Systems (Lahovich 2012) 

The research presented in this paper involved studying the behavior of three separate 

types of short span bridges: integral abutment bridges, “bridge-in-a-backpack”, and the folded 

plate girder bridge.  The “bridge-in-a-backpack” and folded plate girder bridges were studies 

performed on actual bridges.  These bridges were instrumented throughout construction and live-

load tests were conducted on them upon their completion.  The author concluded that the largest 

strains for both bridges were experienced during the construction of the bridges.  The bridges 

were continually monitored for long-term effects until the end of 2011, and the study ended due 

to issues with the data acquisition system. 

The author created detailed finite-element models for different theoretical integral 

abutment bridges.  This analytical study was performed by varying the span lengths, skew 

angles, and beginning or not beginning the live-load analysis from the stiffness of the deformed 

shape under active soil pressure and dead load.  This study also included the analysis of simply 
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supported bridge models with similar characteristics, and then determined the live-load 

distribution factors for the integral abutment bridge models.  These LLDFs were then compared 

to the distribution factors calculated in accordance to the procedure in the AASHTO LRFD 

specifications to determine whether or not the design of integral abutment bridges using common 

practices is conservative.    

The conclusions obtained from this study were that the midspan moments for the integral 

abutment bridge models were between 35-50% less than those from the model with the simply 

supported models.  The author concludes that if an engineer designs for the simply-supported 

structure, that moment could be up to 50% greater than the moment actually experienced in an 

integral abutment bridge. 

When comparing the live-load distribution factors to the AASHTO LRFD equations, the 

author determined that the LLDFs increased as the skew angle was increased, while the 

AASHTO LRFD skew correction factor reduces the LLDFs under the same conditions.  Similar 

to the finite element comparison, the author concluded that the design of integral abutment 

bridges was conservative when designed assuming simply supported conditions.   

The effect of initiating the analysis from the stiffness, based on the deformed shape under 

active earth pressure and dead load, was determined to have the largest effect for long spans with 

higher skews.  The author concluded that a maximum increase of less than 5% for the LLDFs for 

the midspan moment, a maximum decrease in the LLDFs of the endspan moments of 10%, and 

no effect for the shear LLDFs occurred when beginning the analysis based on the deformed 

shape, rather than the undeformed shape. 
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Load Testing and Modeling of Two Integral Abutment Bridges in 
Vermont, US (Kalayci 2011) 

The research presented in this article focused on comparing two integral abutment 

bridges (IABs), located in Vermont, US, with two finite-element models (FEMs) and live-load 

test data.  Both bridges were designed using composite steel I-girders with reinforced concrete 

decking, HP piles, wing walls, and abutments.  The two bridges spanned 43 m (141 ft) and 37 m 

(121 ft) long.  For the live-load test, each bridge was instrumented with displacement 

transducers, tilt meters, earth pressure cells, strain gauges, and inclinometers. These gauges 

measured changes in the overall movement, earth pressure against the abutment, the strain of the 

girders, as well as the strain and angle of the piles.  In addition, each gauge was equipped with a 

thermistor to record the temperature at the gauge location.  For the live-load test, each bridge was 

loaded with either two or three loaded dump trucks stationed at 13 various positions across the 

bridges.   

After the live-load test of each bridge, the data was analyzed and it was determined that 

temperature corrections were required for the measured data in order to determine accurate 

neutral axis locations for the girder cross sections.  Finite-element models were created in order 

to replicate each of the bridges.  Once created, these FEMs were calibrated to more accurately 

represent each of the bridges.  The research concluded that the superstructure of the two IABs 

had a 20% higher negative moment at the ends, when taken as an absolute value, as compared 

with the positive bending moment at the midspan.  The researchers also concluded that the 

substructure displacements were minimal for both bridges and the backfill pressures were 

negligible due to winter month temperatures.  Overall, the researchers suggest that temperature 

induced stress is a problem and should be taken into account, and that live-load distribution 

factors would provide more beneficial information. 
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Chapter 2:   Bridge Description 

The Utah Test Bridge (structure number 1F 205), as shown in Figure 2.1, was selected as 

the test bridge for the proposed equipment trial test as it is also part of a larger study of bridge 

performance for the Long-term Bridge Performance Project (LTBP).  The research conducted 

was performed by Utah State University.  The bridge structure, constructed in 1976, is a single 

span, five girder, pre-stressed concrete bridge built with integral abutments.  It is located 80.5 km 

(50 miles) north of Salt Lake City, UT. The bridge carries two lanes of northbound traffic, as part 

of Interstate 15/84 traveling over Cannery Road in the town of Perry, UT.  The exact location is 

41° 27’ 25.92” latitude and 112° 03’ 18.72” longitude. The bridge has a clear span length of 24.4 

m (80 ft) and an overall length of 25.1 m (82.5 ft).  The height from the road below is 4.68 m 

(15.3 ft).  Figure 2.2 shows a cross section of the bridge.  The bridge incurs an average daily 

traffic (ADT) of approximately 22,000 vehicles, 29 percent of which are large trucks. There is no 

skew associated with this bridge.  A superelevation of 2% was built into the bridge. 

The width of the deck is 13.5 m (44.4 ft) wide measured from the outside of the barriers, 

and 12.3 m (40.5 ft) wide measured from the inside of the barriers.  The deck is comprised of 

203 mm (8 in.) thick of reinforced concrete with a 152 to 203 mm (6 to 8 in.) asphalt overlay that 

had accumulated over years of maintenance.  The concrete had a specified compressive strength 

of 24.1 MPa (3500 psi) and was reinforced with Grade 60 billet-steel, no. 5 bars with at least a 

50.8 mm (2 in.) cover.  A cross section of the deck is shown in Figure 2.3. The barriers were cast 

with a cold joint and have a height of 1.07 m (3.5 ft) running along either side of the bridge.  The 

barriers are reinforced with no. 4 bars of Grade 60 steel with a cover of at least 38.1 mm (1.5 

in.).  
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Chapter 3:   Long-term Monitoring & Instrumentation 

As part of another research program, the Perry Bridge was permanently instrumented 

with various instrumentation.  To provide a comprehensive long-term monitoring system that 

was capable of continuously monitoring data from all possible bridge characteristic parameters, 

many different instruments were selected and installed. The type of instruments selected and a 

brief description of each is provided in the following sections. 

Weigh-in-Motion (WIM) 

The WIM sensor preferred for the Utah Perry Bridge is a quartz piezoelectric sensor. This 

sensor was chosen, among all possible WIM sensors, because it is capable of measuring vehicle 

weights at freeway speeds, 75 mph. A graphical representation of a Quartz WIM sensor is given 

in Figure 3.1. A WIM sensor is capable of recording traffic counts to inform researchers of the 

number of vehicles that use the bridge each day, as well as the percentage of the daily flow that 

is attributed to trucks. 

Initially researchers planned to purchase and install this instrument. Further investigation 

found that a quartz piezoelectric sensor is installed near the Utah Perry Bridge. A Port of Entry is 

located approximately one mile south of the Utah Perry Bridge. It currently operates four WIM 

sensors, two for the southbound and two for the northbound traffic. Each direction of traffic has 

one WIM on the freeway, where vehicles travel at the posted freeway speed limit, and one along 

the lane leading to the port of entry where trucks travel at a speed much less than freeway 

speeds. Figure 3.2 shows the WIM sensor installed along the lane leading to the port of entry; 

showing sensors in parallel and an inductive loop. The WIM that is located along the lane is 

owned by the Utah Department of Transportation (UDOT) Motor Carrier Division (MCD). The 



WIM tha

Figure 3.

Fi

at is located o

.3 show the i

igure 3.2 Qu

on the inters

instrument a

Figur

uartz based W

state is owne

as installed in

re 3.1 WIM s

WIM installe

ed by a priva

n the roadwa

sensor, www

ed in lane lea

ate company

ay for the Pe

w.judico.co.k

 

ading to Per

, Pre-Pass. F

erry, Utah Po

 

kr 

rry Utah Por

Figure 3.2 an

ort of Entry.

rt of Entry 

18 
 

nd 

 



A

shown ho

automati

knows w

calibratio

maintain

D

research 

sensor da

T

measurem

performa

Figure 

As part of the

ow the WIM

cally every 1

when the 100t

on is made fr

s a high leve

Data from the

team throug

ata is monito

The WIM sen

ments. This a

ance of bridg

3.3 WIM ins

e study, resea

M sensors wo

100 trucks w

th truck cross

rom the stati

el of accurac

e WIM locat

gh an agreem

ored continuo

nsor is impor

aids research

ge deck treat

stalled in lan

archers from

ork and recor

with compari

ses and subs

ic scale mea

cy. 

tion in the no

ment between

ously and ca

rtant to obta

hers gatherin

tments (2), p

ne leading to

m USU were 

rd data. The 

ison to the st

equently dir

surement to 

orthbound di

n USU and th

atalogued in 

in vehicle w

ng data for th

performance,

o Perry, Utah

given a tour

WIM owned

tatic scale. T

rects that tru

the WIM se

irection are 

he UDOT M

a rain-fall h

weights that l

he following

, maintenanc

h Weigh Sta

r of the weig

d by UDOT 

The compute

ck to the sta

ensor so that 

available to 

Motor Carrier

histogram.  

lead to strain

g list of LTB

ce and repair

 

ation 

gh station an

is calibrated

er algorithm 

atic scales. A

the WIM se

the USU 

r Division.  W

n and deflect

BP Study Top

r of bridge jo

19 
 

nd 

d 

A 

ensor 

WIM 

tion 

pics. 

oints 



20 
 

(3), performance of bare/coated concrete super and sub-structures (5), performance of embedded 

pre-stressing wires and tendons (7), performance of bridge bearings (8), performance of precast 

reinforced concrete deck systems (9), risk and reliability evaluation for structural safety 

performance (15), performance of pre-stressed concrete girders (17), performance of structure 

foundation types (19), and criteria for classification of functional performance (20). 

Traffic Camera 

A traffic camera with the basic capability of a low resolution streaming video is 

necessary to understand traffic flows during significant events. When coupled with a WIM, a 

streaming video camera will provide supplemental data to understand the cause of a certain 

event. Since the WIM setup for the Utah Perry Bridge is not capable of providing an accurate 

trigger of an event because of the varying times for trucks in and out of the port of entry, a 

streaming video feed will facilitate in capturing traffic events. 

Weather Station 

Environmental effects ranging from expansion and contraction of materials through 

heating and cooling cycles due to daily temperature variations to the more extreme freeze-thaw 

conditions of seasons are important for determining bridge health. Seasonal temperature changes 

can cause joint movement, bearing movement and local strain variations. All of these parameters 

require attention. Knowing the response of the bridge to environmental conditions helps in 

understanding changes in stress and strain. 

The weather station includes instruments to record the following data: precipitation, wind 

direction, wind speed, radiation, humidity, and ambient air temperature. All equipment for a 

weather station is securely fastened to a pole located near the bridge. The location was selected 
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based on approval from FHWA and UDOT according to standards, installation requirements and 

UDOT permission. 

Strain Gauges 

The Utah Perry Bridge has two permanently installed, vibrating wire strain gauges from 

the long-term data system placed on the girders. The high accuracy and longevity of the vibrating 

wire strain gauges provides a precise comparison of the structural response of the bridge over 

time and through deterioration. The slow sampling rate of the vibrating wire strain gauges is 

recorded on a set time interval. There are an additional six foil strain gauges placed on the 

bridge. They aid in understanding the bridge response to excitation/loading scenarios. The data is 

recorded on a much faster time interval than the vibrating wire strain gauges and only on 

triggered events. Collected data from the foil strain gauges is stored following a triggered event. 

Foil strain gauges have a tendency to “drift” over time, which will require periodic zeroing and 

eventual replacement to maintain data quality. 

Velocity Transducers (Seismometer) 

Three velocity transducers are placed on the bridge to record dynamic responses due to 

excitation from vehicles passing over, as well as any possible seismic activity. In addition to 

vehicle loading, Utah is in a seismically active location and any seismicity will affect the 

bridges. It is important to know how the Utah Perry Bridge responds to dynamic loading. Long-

term dynamic analysis will provide for an opportunity to see the change in bridge mode shapes, 

modal frequency and damping ratio through daily and seasonal changes, as well as changes due 

to any deterioration or rehabilitation efforts.  
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Deck Water Saline Content 

The Utah Perry Bridge experiences repeated freeze-thaw conditions with heavy snow fall 

during the winter season. It is well documented that bridge decks freeze before soil supported 

roadway surfaces. UDOT applies varying amounts of de-icing agents on roadways to provide for 

safe driving conditions with extra de-icing agents applied to bridge decks to keep the water from 

freezing. The most common de-icing agent used in Utah is salt. The chlorides in salt can result in 

differing levels of corrosion to the bridge superstructure. 

It is of interest to determine the quantity of salt placed on the Utah Perry Bridge in order 

to understand the effects that chloride application has on the deterioration of the superstructure. 

Two IRS21 Lufft Intelligent Road Sensors are installed on the deck of the bridge to measure the 

saline content of the water on the bridge deck. 

Tilt Meters 

Four total tilt meters are used on the bridge to monitor the effects of an integral abutment 

behavior. To compare the change of abutment rotation to girder rotation, one tiltmeter was 

placed on the abutment while a second tiltmeter was placed a few feet off the abutment on the 

girder, as seen in Figure 3.4. A primary reason that the Utah Perry Bridge was selected was 

because it is constructed with integral abutments. For this reason, monitoring of the abutment 

and near-abutment girder behavior is accomplished through the use of four tilt-meters.  

The tilt meters are located on the first interior girder on the east side, which also 

correspond to the right or truck travel lane. A pair of tilt meters is installed at the north and south 

ends of the bridge. At each location, one tilt meters is placed on the abutment wall between the 

east exterior girder and the first interior girder from the east side, while the additional tilt meter is 
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A thermocouple is placed in the same protective housing as each of the six foil strain 

gauges and the three velocity transducers. The vibrating wire strain gauges and tilt-meters have 

built in thermistors to account for temperature variations so the temperature is known at those 

locations without the placement of a thermocouple. 
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Chapter 4:   Long-term Instrumentation Installation 

Data processing of the long-term instrumentation was conducted by the Utah State 

University Research Team during the same time as the short-term instrumentation. A datalogger, 

capable of connecting to the internet or communication with a modem, collects, delivers, and 

records raw data to a secure site for further analysis. Integration with the communication service 

and the datalogger allows for constant real-time updating of data. This constant communication 

connection removes the need for time consuming visits to the bridge site for data retrieval.  This 

instrumentation also provides a direct comparison with the short-term instrumentation. 

While this study will focus on a comparison of the two data acquisition systems, one 

drawback of the long-term instrumentation is the large amount of collected data and installation 

effort.  A large amount of raw data has been, and will be, collected through the project life of the 

Utah Perry Bridge with the permanent equipment. Because of this large volume, the data is 

stored at Utah State University on a large server for comparison and analysis purposes. 

Installation was divided into two phases due to time and resource constraints. The first 

phase consisted of the site preparation which included the installation of the instrument pad, 

instrument tower, instrument cabinet, conduits, junction boxes, and instrument boxes. The 

second phase included the installation of the sensors. Phase two was carried out over multiple 

events dictated by arrival of instruments and determination of installation methods. The 

following two sections describe each phase and the work completed during both. 

Installation progressed starting from the instrument pad and working toward the bridge. It 

was decided that this would ensure quality assembly and placement of all conduit. The 

instrument pad is the focal point of the installation, so its location was a top priority. The exact 
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location was selected based on the ease of access for a ride-on trencher to scale the steep slope 

safely and adequate room for tower maintenance and tower guy wires. 

Once the location of the pad was selected, the conduit running from the bridge to the 

cabinet and tower was placed and the pad was poured and finished. The installation of the 

cabinet and tower occurred after the concrete had time to set.  The finished product is provided in 

Figure 4.1. 

Multiple junction boxes were installed to allow for easy transition of multiple turns and 

intersections due to the bridge geometry and instrument location. One large junction box was 

installed on the abutment wing-wall that provides a transition from the underground conduit to 

the conduit installed on the bridge. Although only one length of conduit was needed to house all 

instrument cables, an additional three conduit lengths were placed in the trench to allow for 

growth or troubleshooting in the future without the need for extra trenching. Figure 4.2 shows 

the four buried conduit pipes entering the junction box on the wing-wall from the top and the 

single conduit leading to the instruments on the bridge at the bottom of the junction box. 

Smaller junction boxes were used near the abutment to provide a transition from the east-

west oriented conduit to the north-south oriented conduit. These boxes were modified with 

coring bits to provide a secure, water-tight connection between box and conduit, as seen in 

Figure 4.3. These smaller boxes were modified to act as instrumentation protection by cutting the 

backs. The main supply conduit runs a few inches under the girders with a junction box at each 

location where an additional line of conduit rises up to the deck level. 

The conduit was installed on the deck between the girders to collect as many instruments 

as possible with the least number of conduits. Additional boxes were used at instrument 

locations. These boxes allow for the main line of conduit to continue, if needed, while providing 
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Phase two involved the installation of the instruments on the bridge, their assemblage into 

the data acquisition system, verification that all instruments are sampling correctly, and ensuring 

that data is streaming to the collection center. The first instruments installed were the vibrating 

wire strain gauges, the full bridge foil strain gauges, thermocouples, and tiltmeters. Cabling was 

placed for the future installation of the velocity transducers. The installation of the velocity 

transducers occurred shortly after receiving them. 

The weather station, with it respective instruments, was installed once the solar panel 

system was decided on and received. Since both the solar panels and the weather station 

instrumentation are installed on the same tower, it was decided that their installation would occur 

concurrently to ensure the best fit. Also installed on the instrumentation tower is the traffic 

camera. The instrument tower was the last portion of the instruments to be installed. 

The vibrating wire strain gauges are Model 4000 from Geokon. Installation of the 

vibrating wire strain gauges required the use of groutable anchors for concrete applications. A 

1/2" hole is drilled for each of two anchors, as shown in Figure 4.4. The hole is filled with an 

epoxy and the anchors are set in. To ensure accurate placement of the anchors, a spacing jig 

(provided by Geokon) was used. This jig provided the exact drill location. 

Installation of the foil strain gauges by Hitec required an epoxy purchased from Vishay 

Microsystems, M-Bond AE-10, that is made for long-term applications. M-Bond AE-10 has a 6-

hour cure time, during which time a constant pressure of 5-20 psi is required. In order to apply 

the needed pressure to the strain gauges, a system of pressure application was devised, as shown 

in Figure 4.5. 
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Prior to applying the epoxy, the concrete surface was prepared by sanding the surface 

with fine sandpaper, degreasing the surface area, conditioning, and then neutralizing the area. All 

products used for this process were recommended by and purchased from Vishay Microsystems. 

The tiltmeters are Geokon Model 6160 MEMS Tiltmeters. Installation on the Model 6160 

requires only one bolt mounted into the concrete, and the leveling was accomplished through the 

zero adjust pins, as shown in Figure 4.6. 

Thermocouples were installed in all foil strain gauge boxes for a total of six on the 

bridge. The thermocouples were placed with the foil strain gauges to allow for any needed 

temperature compensation for strain. Type T, shielded thermocouple wire was purchased to 

ensure that the 200 ft distance from the instrumentation box to the thermocouple would not be 

damaged and to provide the most accurate temperatures possible. 

Velocity transducers chosen are model L4 Seismometers, or Geophone, from Sercel. The 

L4 chosen has a 1000 gram suspended mass with moving dual coil. The instrument operates at 

1.0 Hz. A significant reason for choosing this instrument is due to the small size and relatively 

nonexistent need for maintenance. The overall dimensions of the L4 are 5 1/8 in. tall and 3 in. in 

diameter, weighing just less than five pounds. Sercel provides the L4 completely sealed, 

therefore requiring no maintenance. In fact, the manufacture recommends that any maintenance 

needed be performed at their laboratory. 

During the instrumentation development stage, it was determined that the physical 

location of the L4 along the cross-section of the bridge would be on the underside of the deck, 

equally spaced between the two girders. To secure the instrument in this location, a holding 

cradle was designed and manufactured at USU for installation. This cradle has the capability of 

leveling so that the L4 will produce accurate readings. The solar panel and all weather station 
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In order to relay information from the bridge site to a storing facility, a wireless CDMA 

router was selected. The router is a CalAmp LandCell 882-EVDO-VZW router. It is capable of 

operating at a frequency of 800 Mhz on a cellular bandwidth. With the option of using either a 

serial or Ethernet connection to the external device, the chosen router allows for direct 

connection with the CR5000, thus reducing additional modules or instrumentation requirements 

for a network interface. The router is activated with an account through Verizon Wireless and 

runs off of 12V DC, supplied through the CR5000. 

With the guidance of personnel from Campbell Scientific, a code was developed to 

sample data through each of the sensors. The detailed, customized code allowed for individual 

settings on instruments including calibration values, sampling rates, channel location, trigger 

values, channel selection, recording location, automatic processing, and information delivery. 

Upon complete installation of the instruments, as well as the data acquisition system, a 

check for accuracy was made. Software purchased from Campbell Scientific allowed for real-

time viewing of the data at the bridge site with a laptop computer. Verification was made that all 

sensors were sampling correctly and that they were all zeroed properly. 

The majority of all code development was made previous to installing the system, some 

settings could not be made until everything was set-up on site and data was flowing. For 

instance, triggers for the foil strain gauges could not be determined until real-time viewing of the 

data was possible. Strain ranges gathered during the Live-Load test were available, but it was 

unknown what the range would be based off of typical, everyday traffic. In addition, the trucks 

crossing the bridge on any given day are much heavier than the trucks used during the Live-Load 

test. Another area requiring specific attention once the system was complete was the Fast Fourier 

Transform calculated from the Velocity Transducers. 
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 As is shown, the requirements for a typical long-term, data acquisition system can be 

very involved.  In addition, the costs can be prohibitive.  For this particular bridge, the cost of the 

system was approximately $89,000.  In addition to the high cost, the system is very difficult to 

transfer from one bridge to another.  Due to these restrictions, a desire to develop a low-cost, 

portable system that can provide suitable results was desired.  
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 The black box user interface allows you to perform three different types of tests including 

triggered tests, decimated tests, or calendar based tests.  The triggered tests will initiate the data 

collection based on a sensor exceeding a predefined trigger threshold as specified by the user.  

The amount of data collected before and after the trigger is also determined by the user.  The 

decimated tests work by collecting all the data at a specified frequency and then decimating the 

data, either by calculating the average over the selected decimated period, or by the maximum 

and minimum points of the decimated period.  Finally, the calendar option allows the user to 

specify certain times of the day, or certain days of the week, for collection periods (i.e. collect 

for five minutes every three hours on Monday, Wednesday, and Friday).  The calendar function 

is not currently operational though it is expected to be functional with the next software update.  

 Other positive aspects included with the black box are the grouping function and sleep 

mode.  The grouping function allows you to base each of your tests only on a certain group of 

sensors.  This allows the user to place a trigger for a group of sensors on one part of the bridge 

and another trigger for a different group of sensors on a separate part of the bridge thereby 

eliminating lag time.  In addition, a user could set up one group of sensors to document how the 

bridge is affected by temperature changes while another group of sensors is set to document the 

strain imposed by trucks passing over the bridge.  Different sensors can be in multiple groups 

including being capable of recording both trigger and decimated data simultaneously. 

 The sleep mode is another essential feature which allows the system to run on only 

battery power without requiring external charging.  Because the requirement of the desired 

system was to be able to monitor the gauges for a week long period on batteries, lower 

consumption was an issue.  The sleep mode allows the system to continuously collect data while 

the computer is only using 1 W of power and then wake up to download all of the data recorded 
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while it was sleeping.  The current system is asleep 90% of the time and downloading the 

recorded data only 10% of the time.  In addition to the described features, BDI is currently 

working to reduce the amount of power required during sleep mode.  



41 
 

Chapter 6:   Live-Load Instrumentation Plan & Testing 

Instrumentation 

An initial comparison of the functionality of the system was performed on a controlled 

test.  A study was conducted on live-load data in order to establish a baseline to evaluate the 

bridge performance.  The live-load test was conducted by driving a truck, or combination of 

trucks, along a predetermined load path and measuring the strain, displacement, and temperature 

from live-load sensors that were installed on the bridge.  The sensors installed on the structure 

are positioned in four separate locations longitudinally along the bridge.  These sensors include 

twenty surface mounted strain gauges, as shown in Figure 6.1, and seven deflectometer vertical 

displacement sensors, as shown in Figure 6.2.  Most instruments were mounted using a boom lift 

though the instruments near the abutment were attached using the embankment underneath the 

bridge.  Researchers used a fast setting adhesive and specially designed mounting tabs in order to 

fasten the instruments to the concrete.  The deflectometers were deflected before the live-load 

test using a weight located on the ground to hold the deflection.  
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The live-load strain sensors were placed in two locations horizontally across the bridge; 

one set at 13.1 m (43 ft) and the other set at 22.9 m (75 ft) as measured from the south end of the 

bridge.  These locations are marked as cross sections BB and DD in Figure 6.3. In theory, the 

ideal locations for the sensors would be at the abutment and at the mid-span.  Due to the harping 

point and diaphragm at the mid-span, gauge locations where slightly adjusted.  In addition, 

placing a strain gauge right on the abutment would provide for extremely low strain readings.  In 

order to receive accurate and useable data, the gauges were offset by 0.91 m (3 ft) from the mid-

span and 1.52 m from the abutment.  The strain sensors were also placed at two different 

locations along the height of the girder.  Half of the instruments were placed on the bottom 

flange of the girders while the other half were placed near the top of the web of the girders.  The 

locations of the sensors at cross sections BB and DD, as well as the sensor identification 

numbers, are provided in Figure 6.4 and Figure 6.5, respectively. 

Like the strain sensors, the deflection sensors were also split between two longitudinal 

locations, however, for these sensors, five were placed in one longitudinal location while only 

two were placed in the other location.  These two locations are shown as cross sections AA and 

CC, respectively, in Figure 6.1. Because the harping point and diaphragm would have no effect 

on the deflectometers, the set of five deflection sensors was put at the exact mid-span of 12.2 m 

(40 ft).  This is cross section AA and can be seen in Figure 6.6. The other two deflectometers 

were placed at 14.6 m (48 ft) as measured from the south end of the bridge.  This point was cross 

section CC of the bridge and is provided as Figure 6.7. All of the deflectometers were attached 

on the bottom flange of the girders.   

 



Figurre 6.3 Plan view of bridgge providing instrumentaation locations 
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Table 6.3 Load Case Descriptions 

Load Case # Load Case Description 

Truck 1 
Load 
Path 

Truck 2 
Load 
Path Repetitions 

1 
Maximize Exterior Girder 

Response (Static) 
1 1 3 

2 
Maximize First Interior 
Girder (psuedostatic) 

1 2 2 

3 

Place One Truck in Each 
Travel Lane. Maximize 

Multiple Presence 
(psuedostatic) 

3 4 3 

4 
Maximize Exterior Girder 

Response Truck 2 Following 
Truck 1 (psuedostatic) 

1 1 2 

5 
Place On White Line of Right 

Travel Lane (psuedostatic) 
5 - 2 

6 High Speed 5 - 2 

 
Table 6.4 Load Path Descriptions 

Load Path # Load Path Description 
Load Path 
Horizontal 

Distance (m) 

Load 
Combination 

Uses 

1 
East Most Location, 0.61 

m off of parapet edge. 
3.33 1, 2, 4, 5 

2 
Places Truck in East of 

Right Travel Lane 
6.27 2 

3 
Center Truck In Right 

Travel Lane 
6.58 3, 6 

4 
Center Truck in Left 

Travel Lane 
10.64 3 

5 

Center Passenger Side 
Wheel on White Marking 
Line (over First Interior 
Girder) in Right Lane. 

6.07 5 
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Data Analysis 

Before using the data collected from the live-load test, an analysis was required to 

determine whether or not the data was acceptable for use.  Two analyses were conducted to 

ensure accurate data.  First, multiple trials were run for each load case which allowed for a 

comparison between two sets of what should be identical data.  All cases resulted in accurate 

data between the multiple runs for each load case.  Figure 6.17 provides an example of this 

comparison.  The second analysis that was conducted on the live-load data was a strain vs. 

deflection analysis for each gauge in order to make sure all of the gauges were reading correctly.  

This analysis is effective because strain and deflection are inversely proportional.  In order to 

make this comparison, the strain and the deflection (which was multiplied by a negative 

multiplier) were plotted vs. all five girders for multiple positions.  This analysis was completed 

on Load Case 4 which was found to provide an increasing shape with Girder 1 being the smallest 

and Girder 5 being the largest as determined by a hand calculation and modeling.  Figure 6.18 

provides the results for a position of 24.4 m (80 ft) and Figure 6.19 provides the results for a 

position of 18.3 m (60 ft).  As shown by both figures, Girder 3 for deflection and Girder 5 for 

strain stray from the intended course of increasing.  An argument could be made that the strains 

in Girders 3 and 4, as well as the deflection for Girders 4 and 5 were off though a quick hand 

calculation disproves this theory.  
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Figure 6.17 Comparison of Load Case 3, 1st Run vs. 2nd Run 

 

Figure 6.18 Strain vs. Deflection comparison for Load Case 4 at 24.4 m 
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Figure 6.19 Strain vs. Deflection comparison for Load Case 4 at 18.3 m 
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that for the psuedostatic case, it was possible to guide the trucks exactly along the white line 

while for the high speed tests, the driver was unable to exactly line the right tires of the truck up 

with the right line. By being slightly off from the line, the strain and deflection in Girder 4 

decreased causing the dynamic affects to be less than the psuedostatic affects.  In addition, it was 

odd to not have a larger range from the dynamic tests, however, this is consistent with the gauges 

reading long-term data. 

 
Figure 6.20 Comparison of microstrain for psuedostatic and dynamic cases 
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Figure 6.21 Comparison of deflection for psuedostatic and dynamic cases 
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the entire two day period at a frequency of 100 Hz.  The decimation was set to average every 

60000 records into one record which provides an average reading over every ten minute period.  

This test was intended to evaluate the movement of the sensors with temperature over the two 

day period.  The second test was set up as a triggered event to record the data 15 seconds before 

and after any of the strain gauges recorded a change exceeding three microstrain.  This test was 

used to provide data for each time a moderate sized vehicle traveled across the bridge. In all, 334 

triggered events occurred over the two day test.  More triggers were expected but the gauges 

were found to vary due to temperature causing our triggers to only work during certain periods of 

the day.  The auto zero function is being fixed in the black box software and is expected to solve 

this problem.  
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Chapter 8:   Black Box Comparison 

 After the two day black box test, the data collected from the strain gauges and 

accelerometers was compared to the data collected over the same time period from the sensors of 

the long-term instrumentation.  Although the black box pilot test was continuously monitored 

over two days, it was determined that the strain gauges were influenced due to temperature and 

so during some periods of the day they would not trigger.  This issue will be addressed in future 

progress of the software.  In addition, the long-term data is only collected for five minutes every 

three hours so, of the 334 triggers collected, only 10 sets of data could be compared.  

For the strain gauges, a direct comparison could be employed between the two sets of 

data.  In most cases, the two sets of data were highly correlated, as shown in Figure 8.1.  

However, in some instances, the two sets of data were different in terms of magnitude, as shown 

in Figure 8.2.  This difference could be attributed to a timestamp difference which would 

indicate that the comparison is between two different groups of vehicles.  A comparison of the 

live-load test data was also compared to the black box data in Figure 8.3 showing a strong 

correlation.  Because the live-load data had been zeroed previously, the data was superimposed 

on the other two sets of data beginning on the y-axis at -33.5 microstrain.  The two sets of data 

are not comparing the same truck and so an exact replica was not expected but more of a 

qualitative comparison can be made. 

In addition, the decimated test for the strain gauges was compared to the long-term strain 

gauge data that was collected as one record every 15 minutes as shown in Figure 8.4.  This 

comparison shows that the trend is the same throughout the day though the black box varies 

more due to temperature than the long-term instrumentation.  This could partly be caused by the 

fact that the black box gauges are all unprotected underneath the bridge while the long-term 
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instrumentation sensors are all housed in boxes underneath the bridge.  A comparison of the 

long-term strain data, the ambient temperature, and the bridge temperature, as shown in Figure 

8.5, shows a strong correlation between the outside temperature and the strain data; with a slight 

delay from the bridge temperature, as expected.  In the figure, the sets of data were zeroed at 

their means in order to provide for a better comparison.  The ambient and bridge temperatures 

are provided along the y-axis as temperature in Fahrenheit while the strain data is provided along 

the y-axis as microstrain.  All sets of data are averaged and recorded along the x-axis with each 

record indicating a 15 minute interval. 

 

Figure 8.1 Girder 2 strain for 30 second period 
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Figure 8.2 Girder 3 strain for 30 second period 

 

Figure 8.3 Comparison of single truck crossing bridge 
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Figure 8.4 Girder 3 strain, two-day period 

 

Figure 8.5 Comparison of bridge strain, ambient temperature, and bridge temperature 
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A highpass Butterworth filter was applied to the detrended data.  The cutoff frequency for this 

filter corresponds to half the sample rate.  The oder of the Butterworth filter was set at 5.  The 

data was processed using the Observer Kalman/Filter Identification Algorithm.  The results are 

shown in Table 8.1. 

Table 8.1 Frequency Overview 

 

Based on the results from Table 8.1, the researchers have concluded that the first 

frequency is associated with very high damping ratios and is not being considered as a structural 

frequency.  This very high damping result also occurred with the second set of data and also 

using the ECA algorithm.  The most consistent frequencies were found to be the third and fifth 

(F3 and F5).  The mode shapes were also analyzed.  It was noted that for the third and fifth 

frequencies, the second sensor always presented a negative value for the eigenvector. This 

occurred for both the OKID and ECCA algorithms.  

F1 F2 F3 F4 F5 F6

Hz Hz Hz Hz Hz Hz

Maximum 2,0266 7,9582 8,9735 9,9898 14,058 18,8041

75th Percentile 1,2571 7,5609 8,4752 9,8889 13,4716 17,6541

Median 1,1532 7,3003 8,3658 9,7295 13,3505 17,5418

25th Percentile 1,0873 7,1438 8,2259 9,6112 13,2456 17,3391

Minimum 1,0057 6,8729 8,0518 9,0143 12,9375 16,4939
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Chapter 9:   Research Conclusions 

In this study, a newly developed short-term data acquisition system was compared to a 

long-term instrumentation system over a two day period to determine whether or not the system 

could be trusted as a mobile alternative to a fully instrumented bridge.  Through this study, it was 

determined that the black box provides comparable, if not less noisy data, than the long-term 

instrumentation.  Whether this noise is due to the sensors being made from different companies, 

doesn’t really make a difference.  The goal of the black box is to be a system that can be taken to 

a bridge with no power, instrumented within a few hours, and then left for two weeks to collect 

accurate data.  As compared to the long-term instrumentation, the data collected from the black 

box is believable.  While there are some issues remaining to be worked out, such as the auto zero 

function which would prevent the drifting of the gauges due to temperature, as well as the sleep 

mode which would enable the system to be left on a bridge with no power for two weeks instead 

of four days, overall this system shows promise as a possible alternative to long-term 

instrumentation.  USU and BDI are currently working on the various issues and the system is 

expected to be running optimally by this summer.  
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Chapter 10:   Bridge Instrumentation & Diagnostics Using 
STS4 & STS Live Testing System 

Introduction 

 Currently there are two types of bridge monitoring systems available at the structures and 

materials laboratory of Virginia Tech.  The first is a system developed by Bridge Diagnostics 

Inc. (BDI), which is primarily a system developed for the short term instrumentation of bridges.  

This system is ideal for performing live load tests where the desired tests can be performed over 

the course of a day.  The second is a system created by Campbell Scientific (CS), which are a set 

of data loggers that allow connection of various instruments.  CS systems can be used for both 

short and long term monitoring, but can be difficult and complicated to program to achieve the 

desired data collection. 

 A new system that has been created by BDI, STS4, will allow for simple deployment for 

both a live load test and also long term monitoring.  Its greatest advantage will allow the system 

to be placed on a structure for a period of a few weeks, be battery powered, and allow for simple 

user input for desired data collection.  In this way, the system becomes a hybrid that will allow 

for one simple system to perform many structural instrumentation tasks. 

 The purpose of this project is to describe the uses of the new system and provide detailed 

instruction on its deployment in both a live load, and long term monitoring scenario.  A proof of 

concept test on the Kerrs Creek Bridge was performed to ensure desired results could be 

obtained from the proposed system.  A user’s manual that will describe both hardware, and 

proper use of software for the STS4 system will be presented.  Also, a system validation test will 

be completed by placing the new system with its instruments next to current monitoring 
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instrumentation to compare results.  Finally, the Varina-Enon monitoring test will be presented 

as a practical application of the system. 

 The vision for the STS4 system is that it would have the following characteristics: 

 A minimum of eight channels used to measure: strain, displacement, temperature, and 
acceleration. 

 Simple deployment. 

 No complex programming. 

 Could withstand field conditions. 

 Powered by a reasonable sized battery system for a period of two to three weeks. 

 On-board data storage. 

 Ability to perform both live load testing, and also long term monitoring. 

 Ability to record data based from triggered events.  

Proof of Concept Testing 

The proof of concept testing was a live load test performed using hardware and software 

developed by BDI. The hardware, STS-WiFi, is a data collection system consisting of battery 

powered nodes where up to four instruments are connected, and a base station that wirelessly 

collects the data from these nodes. A PC is wirelessly connected to the base station. The software 

used to run this system is WinSTS, also developed by BDI. WinSTS provides a simple user 

interface and allows for real time graphic/display of instrument response. The proof of concept 

test was completed before the STS4 system was ordered to insure the purpose of the STS4 was 

achievable. Also, the test was set up so that the researchers could investigate the type of 

information that could be gathered using the proposed STS4 system. In other words, the test was 

set up to mimic the STS4 system.  More specifically, the purpose was to find if various traffic 

characteristics i.e. speed, lane position, load of vehicle, and number of axles could be determined 

from data obtained using the proposed system.  
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Also, the researchers were interested in comparing the joint displacement in an adjacent 

box girder bridge with a previous test done on the Aden Road Bridge.  The Aden Road Bridge is 

similar to the bridge presented below.  The presentation of the live load test will focus on the 

instruments used to reproduce the STS4 system and the investigation of traffic characteristics. 

The comparison of joint movement to that found in the Aden Road Bridge will be reported 

elsewhere. 

Bridge Selection 

A concrete adjacent box girder bridge in good condition was needed to complete an 

appropriate comparison with the Aden Road Bridge. The Kerrs Creek Bridge, located on Route 

60 one mile from Interstate 64 and near Lexington, VA., was selected based on VDOT 

inspections of these bridge types and corresponding ratings. The bridge allowed for an 

instrumentation setup that would be similar to and could be performed with the STS4 system. 

Upon visual inspection the bridge was selected for its ease of access and similarities to the Aden 

Road Bridge. The following criteria were required for the bridge: 

 No skew 

 Superstructure rating of at least 8, with ratings for deck and substructure being above 5. 

 Bituminous wearing surface. 

 Within 2.5 hour drive of Blacksburg. 

 Easily accessible 

The Kerrs Creek Bridge, Virginia structure number 1022 and federal structure number 

15219, carries route 60 over Kerrs Creek. The bridge was completed in 1984 and has an annual 

daily traffic (ADT) of 1955 and average daily truck traffic (ADTT) of 39. The bridge has a single 

simple span of 58 ft., and is shown in Figure 10.1.  
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After the control truck had finished the desired bridge loadings, the instrumentation was 

left in place to allow for bridge testing of ambient traffic. Ambient traffic data was recorded to 

allow comparisons of the ambient traffic to the control truck for calculations of load and speed. 

Table 10.4 contains the ambient runs. 

Table 10.4 Ambient traffic testing information 

Run # Direction Assumed Speed
(mph) 

Run # Direction Assumed Speed
(mph) 

1 South 45 7 North 45 
2 South 45 8 North 45 
3 South 45 9 South 45 
4 South 45 10 South 45 
5 North 45 11 North 45 
6 South 45 12 South 45 

  

Data Organization 

 All data was recorded and stored as a text data file.  These files were then downloaded 

and imported into Microsoft Excel for analysis purposes.  Each set of data was first zeroed by 

subtracting the first data point from subsequent data points.  The data was also smoothed. 

Smoothing of data is necessary due to the nature of both dynamic loading and the inherent noise 

associated with strain transducers.  An average smoothing was performed using Equation 1.  

  

࢏ࢂ ൌ
∑ ࢠశ࢔ష࢏ࡰ
૛∗࢔
స૙ࢠ

૛࢔ା૚
				                     (1) 

௜ܸ ൌ	New data point in place of replaced data point ܦ௜ 

݊ ൌ	Number of data points before and after raw data point to average 
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An example of smoothed data is shown below in Figure 10.11. In this example a ݊ value of 3 

was used to obtain the smoothed data value, and this n value is used throughout the data analysis, 

except in speed calculations as shown in Table 10.5.*** 

 

Figure 10.11 Example of smoothed data 
 

Results 

 The stated interest in the live load test was to see if the proposed STS4 system could be 

used to define traffic characteristics and general bridge behavior.  The data is presented for 

transverse strain distribution in the bridge and the desired traffic characteristics (speed and truck 

location). 

Transverse Strain Distribution 

One of the desired results from the test setup was to determine the transverse bottom 

flange strain distribution at midspan of the bridge.  The transverse strain distribution is shown in 

relation to the front tire position of the control truck for Run #7 in Figure 10.12. The lengths 
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deck participate in the overall stiffness and load distribution of the bridge. Also, by bracketing 

the measured results, it is shown that the measured results are reasonable. 

 

Figure 10.13 Comparison of expected strains to actual strains at 0.25L for Girder 2 
 

Traffic Characteristics 
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the speed was performed (algorithm used presented in Appendix).  By finding the maximum 

strain in each gauge, the time at which the maximum occurred, and knowing the distance 

between the two gauges, the speed was calculated for each run.  The smoothed influence line 

diagram for a 45 mph run in the South direction (Run #1) is shown in Figure 10.14. 

 

Figure 10.14 Influence line diagram of 0.25L and 0.5L for Run #1 
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Table 10.5 Results from speed calculation algorithm with respect to smoothing value n 

Run 
Direction 
of Travel 

Speed 
(mph) 

Calculated Speed (mph) 

n=3  % error  n=5   % error  n=7  % error 

1  S  45  45.5  1.2  43.6  ‐3.0  43.6  ‐3.0% 

2  N  45  87.3  93.9  74.8  66.2  104.7  133 

3  S  45  40.3  ‐10.5  44.6  ‐0.9  45.5  1.2% 

4  N  45  80.6  79.0  99.7  121.6  209.4  365 

5  S  25  23.3  ‐6.9  23.8  ‐4.8  24.4  ‐2.6 

6  N  25  80.6  222  95.2  281  99.7  299 

 

 The error values presented are not only based on the calculated speeds but also depend on 

the accuracy of the truck’s speedometer. Assuming that a vehicle speedometer is not precisely 

accurate, the error values shown for northbound runs are not statistically different from the actual 

speed of the vehicle. More runs would be required to provide a more thorough statistical analysis 

of the accuracy of the calculation.  

It can be seen that speed cannot be accurately determined for runs where the vehicle is 

not traveling over the strain gauge at 0.25L.  Each of the calculations with significant error is 

when the control vehicle was traveling north and the strain gauge at 0.25L was placed under the 

north lane of travel. For accurate predictions of vehicles traveling both directions, strain gauges 

need to be placed in line in two locations longitudinally.  

Figure 10.15 shows graphically the relation of the n value used and the accuracy of the 

speed calculation. It can be observed that as more points are averaged in the smoothing function 

the better prediction of speed obtained. This is true up to an n value of eight at which point the 

calculation becomes less accurate.  Large values of n (values greater than eight) begin to 

eliminate the effect of a local maximum and therefore the speed cannot be accurately 

determined. 
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Figure 10.15 Accuracy of speed calculations based on increasing n values 

Vehicle	Weight	

 The possibility of identifying the weight of a vehicle due to strains produced in the 

girders was also considered.  The maximum strains at midspan produced by the control truck in 
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The comparison of the strains is shown in Figure 10.16. 

 

Figure 10.16 Control Truck Strains compared to Ambient Truck strains 
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The total gross weight of the Control Truck was 30.4 kips, which was used to obtain the 

weight of the ambient truck. Using the strain in the girders under the lane of travel, an estimated 

weight of the ambient vehicle can be calculated.  Table 10.6 shows the maximum strain 

produced in each girder for both vehicles. In order to find the ambient vehicle weight the 

difference in strain from the two events was used.  It can be seen that the percent differences of 

strain in girders 1 through 3 are very similar.  By taking the average percentage of strain over 

girders 1 through 3 and multiplying by the control truck weight (30.4 kips), the estimated weight 

of the ambient truck presented in Table 10.6 is 11.5 kips.  The other girders were not used 

because of the small readings of strain. 

Table 10.6 Calculation of approximate ambient vehicle gross weight 

Girder # 1 2 3 4 5 6 7 
Control Truck (με) 13.2 13.4 15.0 8.1 2.7 3.4 4.5 

Ambient Vehicle (με) 4.9 5.2 5.7 5.0 2.5 3.0 3.7 

Difference in Strain (%) 36.8 38.6 37.9 61.8 93.1 88.5 83.1 

Calculated Load (kip) 11.2 11.7 11.5 18.8 28.3 26.9 24.3 

Lane	Placement	

 It can easily be discovered from the maximum strain produced in each girder the lane of 

travel for the vehicle.  Since the bridge does not act perfectly compositely, the amount of strain 

varies across the cross section of the bridge.  There is then associated a larger strain with the path 

of the vehicle.  This is shown graphically in Figure 10.17 and Figure 10.18.  These figures 

represent a vehicle traveling North and South respectively.  
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Figure 10.17 Maximum strain in each girder corresponding to Run #1 

 

Figure 10.18 Maximum strain in each girder associated with Run #2 
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Figure 10.19 Maximum strain due to ambient truck 
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Table 10.7 List and Description of Hardware 

Item no. Device Description 
1 ARK-1120L Remote Core  This is the computer of the system.   

 2.0 GB memory 
 Low power consumption, <10W 
 2 RS-232 & 4 USB Ports 
 Runs a Windows operating system 

2 EKI-3525 Ethernet Switch  Energy efficient. Automatically powers down ports 
not being utilized. 

 Manages data transfer 
3 SSR 2x Solid State Relay  Turns power on and off by an electrical current 

instead of a using physical switch.  
4 Electrical Switch  In order to deliver power to the rest of the 

components in the box, this switch must be in the on 
position.  (Shown in Figure 10.21 in the off 
position).  

 

The nodes are connected to the gray box via Ethernet cable. Each Ethernet cable is 200ft 

and is industrial shielded with military style connectors at each end.  This allows for the gray box 

to be placed at a convenient location, several hundred feet from the location of the instruments.  

The gray box has connections available for two Ethernet cords. This allows for the connection of 

two nodes, or a capacity of 8 channels.  

 Once the desired instruments have been attached to the nodes, nodes are connected to the 

gray box, and power is supplied to the box, the system is ready to be turned on and operated.  To 

turn the system on simply switch the Electrical switch so that it displays the color red.  Power 

lights should be illuminated on the Ethernet switch and the core computer should show an orange 

light. This orange light signifies that there is power to the computer, but it is not on. To turn the 

core computer on, press the button emitting the orange light on the core computer.  The light 

should turn green.  At this point a faint power light should also be seen on each of the nodes.  

The hardware is now ready for operation.   
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computer controls the nodes.  Running on the Local Core basically bypasses the computer 

hardware in the gray box and allows the local computer (PC) to serve as the “core” of the test 

operation.  This means that all data obtained through running the test will be stored directly on to 

the PC and will not be stored on the computer located in the gray box.  The only practical 

application where this may be useful is in running a live load test where a PC can be 

continuously connected to the system.  It can also be used when there is some issue with the 

remote computer located in the gray box.  

 In order to utilize the true capabilities of the system, the Remote Core option should be 

selected.  This essentially makes the computer inside the box active.  When running STS4 from 

the Remote Core, all information, i.e. groups, triggers, calendar features, is stored in the core 

computer.  Once the connection has been removed from the PC to the box, the Remote Core 

continues to run and collects the desired data. The remote core can store up to 2GB of data and 

can therefore be used for the entirety of the test duration.  The system should be run on the 

Remote Core for nearly all applications of STS4. 

Connecting	to	the	Local	Core	

 In order to run off the local core, settings on the PC need to be adjusted. This has to do 

with the IP address of the connection to allow for communication of the nodes to the PC.  The 

nodes communicate to an IP address of 192.168.10.2. In order to make the connection from the 

PC to the nodes, the LAN network settings need to be set accordingly.  The following steps on a 

windows operating system need to be performed. 

 Control Panel > Network and Internet > Network and Sharing Center > 

Change adapter settings > Network LAN/Ethernet 

 Under the network tab, highlight internet protocol Version 4 (TCP/IPv4).   

 Select properties 
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 Select the radio button titled “Use the following IP address”.  

 In the IP Address enter 192.168.10.2.  The subnet mask should be set to 255.255.255.0 

These settings will allow the PC to communicate with the nodes.  Data from the nodes will be 

directly stored on the PC. Before running the software, the gray box needs to be opened and the 

Ethernet cord going into the core computer needs to be unplugged.  This is because both 

computers, the PC and the core computer, have now been assigned the same IP address.  

Windows will show an error, and connection to the nodes is not possible. After the cord is 

removed, you are ready to run STS Live. 

Connecting	to	the	Remote	Core	

In order to connect to the remote core over Ethernet the preceding section needs to be 

repeated.  However, in this case the IP address needs to end in a value greater than 2, i.e. 

192.168.10.4 as shown in Figure 10.23. The user needs to make sure the Ethernet cord is placed 

into the core computer. This will allow the nodes to communicate directly to the remote core, 

which is assigned the IP address of 192.168.10.2.   This is the preferred method of running the 

system and allows it to use all of its intended functionality.   
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Step	4.	Group	and	Test	Setup	

 The ability to set up groups is one of the STS4 systems most useful features, and every 

monitor test must include groups.  Groups are defined as a collection of instruments for which a 

unique type of sampling is performed.  The user can define as many groups as they would like, 

and a sensor can go into as many groups as is needed.  Groups are not utilized in the live load 

test mode, and are only available during monitor mode.  If the user desires to use groups during a 

live load test, simply use the monitor mode with a set amount of time.  

 Groups are set up in the processing tab.  By selecting the dashed lines in the window, the 

group setup window is presented.   The user is then presented with three areas of entry.  The first 

is the name.  Each group needs to be assigned a unique name. This is critical, as using the same 

name twice will cause issues with the program and data collection.  The second is sample mode.  

There are three options presented; normal, decimated, ontime.  Each option is presented in Table 

10.8. 

Table 10.8 Group options for sampling 

Normal TriggerMode Off No triggers set. All instruments in group will 
record for the duration of test at frequency 
specified in test settings. 

Pre_Trigger Allows for an input of amount of time for data 
output before and after the trigger event.  Also a 
time input for the amount of time the trigger 
must be active. 

Pre_Add_post This is still under development and should not 
be selected. 

Decimated Decimation MinMax Find the min and max value over the set of 
decimation and outputs these two values. 

Average Returns the average reading over the number of 
samples entered in the decimation. 

ONTIME On Time EachDayAt Collect reading at one time each day. 
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Once the group settings are included, the add button appears and can be selected.  At this 

point a list of sensors is displayed and the desired sensors can be added to the group.  When all 

sensors have been added to the group, the finish button can be selected.  If TriggerMode is used, 

the actual trigger level can now be assigned.  Double clicking on the sensor now listed in the 

group tree will allow for entry of the trigger level.  The trigger value is entered in 

PreTriggerLevel, and is in the units specified for the sensor. The polarity is used if you want the 

trigger to happen on the positive or negative slope of the reading.  Only one of the sensors in the 

group can be a trigger.  The others should be selected and the Polarity tab should be set to off.   

 Sensors can also be set to AutoZero.  This is especially important with the BDI strain 

gauges as they are subject to drift.  The AutoZero function ensures that the gauge is always 

balanced at zero and so the accurate trigger can be obtained for each event.  How this AutoZero 

function works is explained in the Appendix.  It should also be noted that AutoZero cannot be 

used for the same instrument in different groups.  

 It is at this point the user would also set up the calendar feature if desired.  The calendar 

feature allows the user to set up days and times during a week in which to run a certain group(s).  

This is another power saving feature of STS4 and will allow for further customization of data 

collection. 

 The test is now ready to run.  To run the test and record the data the record button on the 

Test Control Panel should be selected.  The test has now begun and data is being recorded.  If the 

test is set to continue, the test will now run until it is stopped by the user. The user can now exit 

the program and disconnect the PC from the remote core.  When desiring to end the test the user 

should reconnect to the core, and press the stop button on the TCP.    
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Step	5‐	Data	Download	from	Remote	Core	

 Once the test is stopped the data can then be downloaded from the Remote Core.  This is 

done by selecting the settings button on the TCP.  Under the “files” tab the user will find a file 

tree.  All of the data is placed in folders by the month and day of when the test was started.  The 

files are named by time of the start of the test.  The user should select the desired folder or file 

they wish to download, select a destination folder, and then press the download button. 

The file produced is a TDMS file.  This type of file is meant to be used with Microsoft 

Excel.  A simple add-in is available from the National Instruments website for download.  This 

type of file makes for easy and simple data analysis, and requires less post-processing of data. 

Attempted System Validation 

  The Varina-Enon Bridge (VEB) near Richmond Virginia currently has a long term 

monitoring system set up in one of the approach spans. The data collection system currently 

being used is a Campbell Scientific (CS) system using CR1000 dataloggers. This system has 

been in place since August 2012 and the data that is being gathered is reliable and accurate. In 

order to validate the STS4 system for accuracy and reliability, it will be compared to the CS 

system. 

Current Test Setup 

During a routine inspection of the Varina-Enon Bridge, a joint in the 6th span of the 

approach structure was observed to visibly open under live load. This effect seemed to be caused 

by large temperature gradient.  The joint of interest is shown in Figure 10.29 as Joint E. Virginia 

Tech was tasked with instrumenting the bridge to understand the behavior of the joint over a 

period of time.   
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was a decimation of an average of 1000 points.  So these instruments gave one recording every 

ten seconds.   

 The other group was setup as a trigger group.  The instrument to be set as the trigger was 

ST1034.  The value of the trigger was set to 11 microstrain.  This trigger would give recordings 

of ST1034, ST1035, and the two LVDTs of 2.5 seconds before and 2.5 seconds after the trigger 

occurrence.  Both of the strain gauges were set to AutoZero, so that theoretically the trigger 

value would work regardless of the drift of the instrument. 

Results 

 The test was started on January 30th at 1:21 pm and the data was retrieved on February 4 

at 11:30 am. Although a few recordings were obtained that seemed to show results that were 

expected, upon closer examination much of the data obtained was not accurate or complete. 

Overall System Behavior 

 STS Live recorded 19 triggered events over the duration of the test. During the same time 

period the CS system only recorded three events.  This was the first indication that STS4 did not 

give the desired results.  Figure 10.35 shows the maximum and minimum values that were 

obtained from the trigger gauge (ST1034) for each event.  A good triggered event would show a 

minimum value around zero.  This value could be larger or smaller based on what type of live 

load event is occurring, but should be a within a few microstrain of zero.  The maximum value 

should be greater than or equal to 11 με in all situations. 
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Figure 10.35 Maximum and minimum strain for the trigger strain gauge 

 
It can be seen that the first three records gave reasonable results.  The trend of the 

minimum recorded value increasing can also be observed.  This shows that the gauge was 

experiencing some type of drift and was not being set to zero after triggered events.  Drift of this 

nature does not provide the desired results because the trigger is set at 11με, and therefore a live 

load event where the gauge experiences less than 11με will cause the trigger to be set.  It can be 

seen that the minimum never reaches above 11με. This can be explained by noting that once the 

gauge drifts above 11 με the trigger will never occur and therefore no more events are recorded.  

 The timing of these events is also of interest. Figure 10.36 shows the same maximum and 

minimum values for the trigger gauge as displayed in Figure 10.35 but this time they are plotted 

with respect to time.  It can be seen that during the first recordings the gauge is producing 

minimum values that are zeroed properly. The gauge then begins to drift rapidly. The minimum 

recorded value shows a large amount of the drift occurred at the same period of time, about 11 
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hours after the system was deployed.  The gauge then seems to have not experienced much drift 

over the course of the next 70 hours.  The recordings cease at just less than 80 hours even though 

the system was deployed for a total of 118 hrs.  This is another indication that the system drifted 

out of the range of the trigger.  

 

 

Figure 10.36 Maximum and minimum recorded value for trigger vs. Time 

Triggered Strains 

 The strain recordings obtained from the STS4 system were compared to those produced 

by the Campbell Scientific dataloggers. The recordings that are of use from the STS4 system are 

those where the difference in maximum and minimum strain recorded by the trigger gauge are 

larger than 10.  These will be compared to the three recordings obtained using the CS equipment. 

All plots from the STS4 recordings have been smoothed using a 10 point running average.  The 

CS data did not require as large a running average for smoothing because a sample rate of 33 Hz 

was used. Therefore, a five point running average was used to smooth the CS strain data.  

 Figure 10.37 shows the strain recordings for the first triggered event recorded by STS4.  

Already it can be seen that the instruments have begun to drift.  The reading begins at about 2-3 

με and then shows a dip in the strain due to the concrete being in compression.  The bottom 
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bridge flange then experiences tension to increase the strain at Section F to a value where 

ST1034 triggers at a value of 11με.  

 It would be expected that the instruments located at Section E and Section F would 

record their peak readings at a slightly different time because of their different location 

longitudinally along the bottom bridge flange.  Figure 10.37 shows this result and gives good 

confidence in the timely response of the system. 

 

Figure 10.37 Typical strain recordings for ST1034 and ST1035 from STS4 

 
An example of a strain recording for the CS system is shown in Figure 10.38.  The same 

type of behavior is exhibited as was recorded using the STS4 system.  We clearly see the trigger 

occurring at 11 mircrostrain, the dip showing compression, and the peaks of the two gauges 

being at different times.   
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Figure 10.38 Strain recordings for DBI(1) and BDI(2) from CS 

 
It is difficult to compare in detail the two systems because at no point did a trigger from 

the CS system occur at the same time as the STS4 system.   This is mostly associated with the 

drift in the trigger gauge.  At the time of the first recorded event of the CS system the STS4 

instruments had drifted beyond a reasonable minimum starting point.   

 Table 10.9 shows a comparison in the average recording of both the STS4 and CS strain 

gauges.   The values corresponding to the CS instruments are an average of the three events that 

occurred during the STS4 deployments. The values corresponding to the STS4 instruments are 

the average of the four significant events that were recorded.  

 The CS records are triggered at the same value, but it is clear to see that it took a much 

larger event to set the trigger.  This shows a proper zeroing effect of the CS system.  However, 

the differences between the recordings at Section E and F for both systems are quite well 

proportioned.  The CS events at Section F are 3.62 times greater than at Section E.  The STS4 are 

3.08 times greater for the same instruments.  For a small sample size, this shows that reasonable 

strain values were recorded by the STS4 system.  
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Table 10.9 Average reading of strain gauges 

System Instrument Max Min 
Range 

(Max-Min) 

CS 
BDI(1) (με) 11.11 -1.99 13.10 

BDI(2)  (με) 2.31 -1.30 3.61 

STS4 
ST1034 (με) 16.97 8.31 8.66 

ST1035 (με) 45.44 42.63 2.81 
  

 It is also worth noting that the strain gauges associated with the STS4 system experienced 

jumps in the recordings.  This jump occurred at random times within each triggered event.  

During some events there would be no jump and in others there would be more than one.  A 

typical jump in the readings was around 1-3με.  The jumps are best seen in the raw data as 

presented in Figure 10.39 and Figure 10.40. BDI has been made aware of the strain jumping and 

is troubleshooting the issue. 

 

Figure 10.39 Strain jumping as observed in STS4 instruments 
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Figure 10.40 Strain jumping as observed in STS4 instruments 

LVDT Results and Joint behavior 

 As mentioned in the test setup, LVDTs were positioned over the joint at Section E and 

were placed as close as was reasonable to the LVDTs already in place. The LVDTs were 

programmed to the same trigger as the strain gauges so as to able to note the opening of the joint 

during significant live load activity.  

 The initial observation of the LVDTs used for the STS4 system showed a very large 

amount of noise in the data.  Figure 10.41 shows a reading for a LV3550 during a live load 

event.  The noise of the gauge covers 0.0004 in.  This is significant when the event has a total 

range less than 0.0008 in.   

-1

0

1

2

3

4

5

-3 -2 -1 0 1 2 3

S
tr

ai
n

 (
μ
ε)

Time (sec)

ST1035



119 
 

 

Figure 10.41 LVDT record from STS4, raw and smoothed data 

 
LVDT(1), which was next to LV3550, and recorded by the CS system, shows very little 

noise in comparison to LV3550 as is shown in Figure 10.42.  Upon further communication with 

Bridge Diagnostics it has been determined that the intelliducers (plug placed into node) on the 

STS4 LVDTs are the source of the noise in the system.  This can be fixed and should not be an 

issue for future uses of the system.  
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Figure 10.42 LVDT record from CS without smoothing 

 
After smoothing of the results a more accurate comparison could be made in regards to 

the opening of the joint.  Again the three records from CS will be considered along with the four 

significant events recorded by STS4.  The smoothing for the STS4 LVDTs was a 10 point 

running average and the CS LVDTs were smoothed with a three point running average.  

Table 10.10 Comparison of average LVDT readings at joint at Section E 

System Instrument Max Min Range 

STS4 

LV3550  
(in) 

-0.00572 -0.00627 0.00054 

LV3549 
(in) 

-0.00858 -0.00886 0.00029 

CS 

LVDT(1) 
(in) 

-0.22350 -0.22406 0.00056 

LVDT(2) 
(in) 

-0.23752 -0.23788 0.00036 

 

Table 10.10 shows that the LVDTs accurately captured the opening behavior of the joint.  

The difference in opening values for LV3550 and LVDT(1) is only 3%.  LV3549 and LVDT(2) 

-0.224

-0.2238

-0.2236

-0.2234

-0.2232

-0.223

-0.2228

-0.2226

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

D
is

p
la

ce
m

en
t 

(i
n

)

Time (sec)

LVDT(1)



121 
 

show a difference of 24%.  The reason the difference is greater between the latter LVDTs is 

because at smaller readings the noise and smoothing has a larger effect.  

Conclusions and Recommendations  

It has been shown that the STS4 system has many applications and uses.  The system can 

be used for simple monitoring of traffic characteristics, joint behavior, general bridge behavior, 

and other things of interest to the bridge and structure monitoring community.  The ability for 

rapid deployment, ease of use, and battery powered operation make the system of interest for 

both private structure monitoring firms and government agencies such as a state department of 

transportation.  

Although a very useful system as is, there are many improvements that could be made on 

the system after testing its use.  Battery powered operation must be improved.  Currently the 

system will require four large marine batteries to power the system for a period of two weeks and 

a special adapter. The developers are working on ways to allow for more power saving 

operations in the system.  

The user interface has room for improvement as well. The following things need to be 

addressed to fully utilize the system. 

 The software should flow naturally from the logical steps of a bridge test.  Sensor 

information- sensor setup- test variables and conditions- run and monitor- data 

collection.  The user needs to go back and forth from one tab to another to successfully 

complete a test. It is not made evident where the necessary components that need to be 

setup are.  

  It should not allow for the beginning of a test until all the inputs have been placed and 

verified.  
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 The data is currently stored in a TDMS file format.  This is a good feature; however in 

many situations a text file is useful for data analysis using various programs. 

There are clearly issues with current system as was shown in the Varina-Enon 

comparison. As of the writing of this report the following items are still being worked on or 

developed: 

 The spontaneous jumping of strain gauges. 

 The drift of instruments that are set to AutoZero.  These first two issues are the most 

critical errors and must be fixed before further deployment in the field. 

  A calendar feature is part of the program and allows the user to run groups only during 

certain times of the day.  According to BDI this feature is not yet ready for full 

implementation. The feature has not been tested in the field, and further investigation into 

its functionality needs to be explored. 

 Proper elimination of noise in LVDTs 

The STS4 system will become a successful tool to be used in the monitoring of 

structures. However, the product just needs more time for the issues with software and hardware 

to be properly worked through. 

Appendix 

Speed Calculation Algorithm 

 The routine is a function of the Data “D” and the distance between the two gauges “dist” 

in inches.  The first line finds the maximum value for the strain gauge at 0.25L, and then saves 

the point at where that value occurs.  The second line does the same for the strain gauge at 0.5L. 

The third line takes the difference in the record points and divides them by the sample rate.  This 
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gives you the time between the two maximums events.  The fourth row divides the distance by 

the time and is multiplied by a conversion factor to output MPH.  Note: The data should be 

smoothed prior to running the algorithm. 

 

Speed D dist( ) n match max p( ) p( )

m match max q( ) q( )

k
n m( )

100.16


Mph
dist

k
.05681818

Mph



 
 

AutoZero Function Algorithm (Developed by Rene Hamer of Bridge 
Diagnostics Inc.) 

 The AutoZero mode is intended to slowly compensate initial offsets and drifts to zero 

level.   The speed of the AutoZero mode, or how aggressive the routine compensates to zero, is 

controlled by a time constant that the user can enter.  The lower the value of the time constant the 

more aggressive the zero will be. The routine is as follows: 

ሺ݊ሻݐݑܱ݁ݑ݈ܸܽ 	ൌ –	ሺ݊ሻ݊ܫ݁ݑ݈ܸܽ	 ሺ݊ݎ݋ݎݎܧ	 െ 1ሻ	

ሺ݊ሻݎ݋ݎݎܧ 	ൌ ሺ݊ݎ݋ݎݎܧ	 െ 1ሻ 	൅ 	݇ ∗ ሺ	݂ሺܸ݈ܽݐݑܱ݁ݑሺ݊ െ 1ሻሻ/ሺ߬ ∗ 	ሻሻݏ

  Where: 

  ݂ሺݔሻ is defined as: 

   if   ܵܤܣሺݔሻ 	൏ 0.1							݂ሺݔሻ ൌ  ݔ
   if   ܵܤܣሺݔሻ ൒ 0.1								݂ሺݔሻ ൌ 0.1	 ∗  ݔ	݂݋	݊݃݅ݏ	

   In other words ݂ሺݔሻ is limited to +/- 0.1 

  ݊ = sample number 

߬ = time constant entered by user (sec) 
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 sample rate (hz) = ݏ

݇ = 100 this is a gain factor 

When triggered the compensation is on hold. 

݂ሺݔሻ limits the rate of the compensation heavily.  Before running a test, the user should still 

balance the sensors. 

Calculation for Expected Strains in Kerrs Creek Bridge 

The properties for the bridge, assuming each girder and parapet act compositely as a single 

whole: 

ܫ  ൌ 2670894	݅݊ସ   ݕ௕௔௥ ൌ 17.34	݅݊ 

The properties for the bridge, assuming each girder acts compositely as a single whole, without 

parapets. 

ܫ  ൌ 798153	݅݊ସ					ݕ௕௔௥ ൌ 16.95	݅݊  

The strain experienced by the cross section due to load can be represented by: 

ߝ  ൌ ሺܯ ∗ ܫሻ/ሺݕ ∗  ሻܧ

  Where: 

ܧ    ൌ ܧ   Concrete	for				݅ݏ݇	4030.5 ൌ  Steel	for				݅ݏ݇	29,000

ܯ    ൌ  inches	is	x	Where	inches.	180	to	0	from		ݔ0.75

ܯ    ൌ െ0.25ݔ ൅ 180		from	180	to	720	inches 

Therefore the lower bound, or minimum expected strain becomes: 

ߝ  ൌ 1.2081 ∗ 10ିଽݔ				Strain	per	1	kip	of	load.	x	from	0	to	180	inches 

ߝ  ൌ െ4.027 ∗ 10ିଵ଴ݔ ൅ 2.90 ∗ 10ି଻			Strain	per	1	kip	of	load.	x	from	180	to	720	in. 

Maximum expected strain, assuming parapets do not act compositely: 

ߝ  ൌ 3.73 ∗ 10ିଽݔ		Strain	per	1	kip	of	load.	x	from	1	to	180	inches 

ߝ  ൌ െ1.248 ∗ 10ିଽݔ ൅ 8.984 ∗ 10ି଻		Strain	per	1	kip	of	load.	x	from	180	to	720	in. 
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  Instructions for Using TDMS Files in Excel 

Excel as it comes regularly installed cannot open the TDMS file produced by STS Live.  

A TDMS importer is required.  The TDMS importer is a Excel “Add-in” and can be downloaded 

from the National Instruments website:  http://www.ni.com/example/27944/en/. 

 Once this is downloaded, a TDM importer will appear in the “Add-ins” tab of Microsoft 

Excel. Clicking on this icon will open a file explorer, where a TDMS file can be selected an 

opened in Microsoft Excel.  The file can then be saved as a regular excel file. 

Updating STS Live and the Remote Core 

Because STS Live is a new product and still under development, there will be several 

updates required by the users.  Up to this point, updates have come via email from Rene Hamer 

at BDI.  Two files are included in each update, one to update STS Live on the PC and the other 

to update the Remote Core computer. These files are sent with a file type .ex_.  Once the user 

downloads the updates these files need to be changed to .exe.  Once the STS Live file extension 

has been changed it can be run and the previous version of STS Live can be deleted.  The remote 

core usually comes as Core_XXX.ex_. Again, the extension needs to be changed to .exe. This 

file then need to be copied into destination C:STS_Live/STS_APP. Open STS Live, connect to 

the core computer and open Settings.  On the settings tab, the user will be able to see the version 

of the core currently running, and a box can be selected to upload the new the Core version.  

After this is complete, the user should exit STS Live and restart the core using the “Restart Core” 

play button on the splash screen.  The core is now updated. 
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Statistical Difference of Calculated vs. Observed speeds 

 A simple paired t test was used to test the statistical significance of the results the speed 

calculation results when smoothed using an n value of 7. 

పܺ෡ ൌ ሺ ௜ܺ െ തܺሻ  and   ෠ܻ௜ ൌ ሺ ௜ܻ െ തܻሻ 

Where ௜ܺ 	represents	each	sample	and		 തܺ	represents	the	mean.		Same	for	ܻ 

Then: 
 

ݐ ൌ ሺ തܺ െ തܻሻඨ
݊ሺ݊ െ 1ሻ

∑ ሺොܺ݅ െ ොܻ݅ሻ௡
௜ୀଵ

 

Where ݊	represents	the	number	of	samples.	In	this	case	3. 

Using the calculated speed heading south we get: 

ݐ ൌ ሺ38.33 െ 37.83ሻඨ
3ሺ3 െ 1ሻ

ሺ6.67 െ 5.57ሻଶ ൅ ሺ6.67 െ 7.67ሻଶ ൅ ሺെ13.33 ൅ 13.43ሻଶ
 

ݐ ൌ 0.9078 

This	ݐ	value	corresponds	to	a	P	value	of	0.4598. 

 By conventional criteria the difference is not considered statistically significant. 

See http://www.graphpad.com/quickcalcs/ttest1/.  
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